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CALVI Project, INRIA Lorraine and Université Louis Pasteur
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The Vlasov-Poisson model

Consider the collisionless Vlasov-Poisson model

Vlasov equation

∂tf + v ·∇x f + q
m (E + v ×B) ·∇v f = 0

Poisson equation

−∆φ =
∫
IRd f(t,x,v)dv,

E(t,x) = −∇xφ(t,x).

We want to solve this system on a phase-space grid using the property of

Invariance along
characteristics
d

dt
f(X(t), V (t), t) = 0

where Ẋ = V , V̇ = q
m (E(X(t), t) + V (t)×B(X(t), t)).
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where Ẋ = V , V̇ = q
m (E(X(t), t) + V (t)×B(X(t), t)).

ICAP 2006, Chamonix, 2-6 Octobber 4 / 34



Motivations for grid based methods
The numerical method

Numerical algorithm
Numerical results

The Vlasov-Poisson model
The backward semi-Lagrangian method
Pros & cons of PIC and Eulerian methods

The backward semi-Lagrangian method

f conserved along characteristics

Find the origin of the characteristics ending at
the grid points

Interpolate old value at origin of characteristics
from known grid values → High order
interpolation needed

Typical interpolation schemes.

Cubic spline [Chang & Knorr 1976, Sonnendrücker et al. 1999]
Cubic Hermite with derivative transport [Nakamura & Yabe 1999]
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PIC methods

Particle-In-Cell (PIC) method is the most widely used.

Pros :

Good qualitative results with few particles.
Very good when particle dynamics dominated by fields which do not
depend on particles (e.g. in accelerators when self field small compared to
applied field).
More efficient when dimension is increased (phase-space = 6D).

Cons : Hard to get good precision : slow convergence, numerical noise,
low resolution at high velocities.
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Grid based methods

Grid based Vlasov methods have been recently developped thanks to the new
computationnal facilities

Pros.

High-order method.
Same resolution everywhere on grid.

Cons ;

Numerical diffusion
Curse of dimensionality : Nd grid points needed in d dimensions on
uniform grids.
Number of grid points grows exponentially with dimension
→ killer for Vlasov equation where d up to 6.
Memory needed

In 2D, 163842 grid → 2 GB
In 4D, 2564 grid → 32 GB
In 6D, 646 grid → 512 GB

⇒ Adaptive algorithm in higher dimensions
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Localization of points

PIC code non linear approximation
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Principle

Solve Vlasov equation using a semi-Lagrangian algorithm which consists in two
stages

Advection : follow the characteristics backward,

Interpolation : interpolate the distribution function on a grid at the
origin of the characteristics,

and a nonlinear approximation of the distribution function in order to

have a natural criterion to refine/derefine the grid,

possibly compute the interpolation adaptively.
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Grid refinement

Grid Gj , grid points xj
k = k 2−j

dyadic refinement of the grid

j0 is the coarsest level

J is the finest level

logical points of level j
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Grid refinement

Grid Gj+2, grid points xj+2
k = k 2−(j+2)

dyadic refinement of the grid

j0 is the coarsest level

j1 is the finest level

logical points of level j
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Uniform and hierarchical refinements

Coarse grid

Uniform refinement Hierarchical refinement
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Nonlinear approximation

Decomposition of fj+1 in uniform and hierarchical basis

fj+1 =
∑

k

cj+1
k ϕj+1

k (uniform)

=
∑

k

cjkϕ
j
k +

∑
k

dj
kψ

j
k (hierarchical)

In hierarchical decomposition coefficients d2i+1 at fine scale are small if
f is close to affine in [x2i, x2i+2].
Linear (uniform) approximation consists in using a given number of basis
functions independently of approximated function f .

Nonlinear approximation consists in keeping the N highest coefficients in
hierarchical decomposition (depends on f) [De Vore 1998]
Only grid points where f varies most are kept.
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Construction of a hierarchical approximation

Hierarchical approximation is constructed by defining an interpolation
method enabling to go from coarse grid to fine grid.

Two methods have been tried :
1 Interpolating wavelets based on Lagrange polynomial interpolation.

Classical wavelet compression technique. Addressed moment conservation
issues [Gutnic & Haefele & Paun & Sonnendrücker 2004,
Gutnic & Haefele & Sonnendrücker 2006].

2 Hierarchical approximation based on finite element interpolants. More
local, cell based → simpler and more efficient parallelization.
[Campos Pinto-Mehrenberger 2003].
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Hierarchical expression of fj+1 of

interpolating wavelets

Consider Gridfunction fj defined by its values cjk on Gj of step 2−j .

Define dyadic refinement procedure via
interpolation operator, e.g. Lagrange
interpolation

Refinement procedure linear with respect to cjk so that on can introduce

basis functions ϕj
k defined by infinite refinement of δk,n : ϕj

k are the

basis functions at level j such that ϕj
k(xj

k) = 1 and ϕj
k(xj

l ) = 0 if l 6= k
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Projection and prediction operators

To map the distribution function from one level to the next, we then have

The projection operator (≈ restriction operator) : cj+1
2k 7→cjk

The prediction operator

P j+1
j : Gj → Gj+1,

such that cj+1
2k = cjk,

cj+1
2k+1 = P (xj+1

2k+1),

where P here stands for Lagrange interpolation polynomial.
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Representation of the solution

In this approach, the representation of the solution is based on

dyadic grid of phase space

⇒ Adaptive grid G̃

a wavelet decomposition writing equivalently f as

⇒ f(x) =
+∞∑

l=−∞

cj0l ϕj0
l (x) +

j1−1∑
j=j0

+∞∑
l=−∞

dj
l ψ

j
l (x)

where dj
l = cj+1

2l+1 − P (xj+1
2l+1) = f(xj+1

2l+1) − P (xj+1
2l+1) is small when approxi-

mation at level j is good.

⇒ We have a natural compression criterion
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Thresholding

Consider following expression : fj+1 =
∑

k c
j
kϕ

j
k +

∑
k d

j
kψ

j
k.

Adaptivity introduced by neglecting the terms in this expansion such
that |dj

k| < εj .

Error commited can be easily estimated

‖dj
kψ

j
k‖Lp = |dj

k|2
− j

p ‖ψ‖Lp < εj2−
j
p ‖ψ‖Lp .

Moments of fj+1 can be conserved by appropriately modifying ψ :
taking ψm = ψ −

∑
k skϕ(· − k) with (sk)k chosen such that∫

xlψm(x) dx = 0 for 0 ≤ l ≤ m.
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Numerical algorithm...

Initialization :

computation of details from analytical initial function f0

⇒ decomposition of f0
⇒ compression of f0 by thresholding small details
⇒ corresponding adaptive grid

Time marching step :

forward advection in x of the adaptive grid

⇒ prediction of the new adaptive grid G̃
...with refinement procedure (one level finer)

Construction of Ĝ : grid where we have to compute values of f∗ in
order to compute its wavelet transform.

ICAP 2006, Chamonix, 2-6 Octobber 20 / 34



Motivations for grid based methods
The numerical method

Numerical algorithm
Numerical results

Numerical algorithm...

Initialization :

computation of details from analytical initial function f0

⇒ decomposition of f0
⇒ compression of f0 by thresholding small details
⇒ corresponding adaptive grid

Time marching step :

forward advection in x of the adaptive grid

⇒ prediction of the new adaptive grid G̃
...with refinement procedure (one level finer)
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...Numerical algorithm

Advection-interpolation in x : follow the characteristics backwards in
x and interpolate on old adaptive grid :

⇒ interpolation using wavelet decomposition
f∗(x, v) = fn(x− v∆t, v)

Wavelet transform of f∗ : compute the ck and dk coefficients at the
points of G̃.

Compression of new f and coarsening of the grid

Computation of electric field from Poisson.

Same procedure for the velocity advance.
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The Landau damping

The initial condition is given by

f0(x,v) = 1
2π exp

(
−v2

x+v2
y

2

)
× (1 + α cos(kxx) cos(kyy)),

in nonlinear regimes (kx = ky = 0.5 ;
α = 0.5).

Small scales well captured SLD movie

Exponential growth of the electric energy
before saturating, with an accurate
damping rate γ = 0.4.
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The two-stream instability

The initial condition is given by

f0(x,v) = 1
12π exp

(
−v2

x+v2
y

2

)
× (1 + α cos(kxx)) (1 + 5v2

x),

with kx = 0.5 and α = 0.05.

General behaviour (appearance of the
instability and rotation of the vortex)

TSI movie

Mass is not exactly conserved but with a
reasonable rate.
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Beam focusing in solenoid lattice

Consider a Proton beam (100 mA, 5 MeV) in
solenoid lattice, initial condition given by the
following gaussian distribution

f0(x,v) = exp
(
−x2+y2+v2

x+v2
y

2

)
,

The beam is well focused SOL movie

Points kept are less than 5%
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Beam focusing in alternating gradient lattice

Consider a Potassium beam (40 mA, 1 MeV)
in alternating gradient lattice, initial condition
given by the following gaussian distribution

f0(x,v) = exp
(
−x2+y2+v2

x+v2
y

2

)
,

The beam is well focused ALT movie

Points kept are less than 10%
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Comparison with LOSS solver

Time computation and speedup

Numbers of processors 1 2 4 8
Time (in s.) LOSS/OBI 433/408 226/206 111/105 63/55

Speedup LOSS/OBI 1 1.92/1.98 3.9/3.88 6.87/7.41

Computations conducted on an IBM Regatta machine Power5 processors. The

results corresponds to 1284 points in the phase space on one time step.

Time evolution of the Xrms quantity. Difference between LOSS and OBI

distribution function
ICAP 2006, Chamonix, 2-6 Octobber 27 / 34
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Conclusion and perspectives

Grid based Vlasov solvers are a valuable tool to have in one’s simulation
toolbox.

No noise. Better representation in low density regions of phase space.

Adaptive grid strategy can be made efficient by careful optimization.

2D code is now running and can perform realistic simulations of
transverse phase space.

• Applications to laser-plasma interaction

• Likely that such methods can be applied to 2D 1
2 and 3D in the future,

for ICAP 2008 ?

• Ready for comparison with PIC methods.
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The Landau damping

Time evolution of the mass.
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The two-stream instability

Time evolution of the mass.
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Beam focusing in solenoid lattice

Kept points in percent.
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Comparison with LOSS solver

Time evolution of the Xrms quantity.
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Comparison with LOSS solver

Difference between LOSS and OBI distribution function

ICAP 2006, Chamonix, 2-6 Octobber 34 / 34


	Motivations for grid based methods
	The Vlasov-Poisson model
	The backward semi-Lagrangian method
	Pros & cons of PIC and Eulerian methods

	The numerical method
	Principle
	Refinement features
	Hierarchical approximation
	Representation of the solution
	Thresholding

	Numerical algorithm
	Numerical results
	The Landau damping
	The two-stream instability
	Beam focusing


