

The Universal Accelerator Parser

David Sagan Dan Bates Andy Wolski

Overview

- Project motivation
- Accelerator Markup Language (AML)
 - Overview
 - Example
- Universal Accelerator Parser (UAP)
 - Overview
 - Internal Structure
 - Example
 - Language Module
 - Superposition of elements
 - Control elements
- Project status
- Conclusion

Project Motivation

Different accelerator analysis programs use different input formats to describe a lattice

A Tower of Babel:

Solution

<u>Wish List:</u>

- Comprehensive set of machine elements.
- Ability to describe control room knobs, support girders, klystrons, etc.
- Describe complex machine layouts.
- Describe spatially overlapping elements
- Ability to use arithmetic expressions.
- Flexible Easily upgradeable to meet changing requirements.

Accelerator Markup Language

Accelerator Markup Language (AML)

• AML is standardized lattice description format based upon the eXtensible Markup Language (XML).

Why base AML on XML?

- XML is a standard (HTML is based upon XML).
- The flexibility of XML gives AML the ability to be easily extended when desired.
- The flexibility of XML gives AML the ability to be easily used as the basis for a database describing an entire accelerator complex.

XML Example

XML represents data as a node tree:

AML Example

AML in Brief

- Accelerator Markup Language:
 - Full set of machine elements including: wigglers, linac accelerating cavities, etc.
 - Can describe physically overlapping elements.
 - Can describe "control room knobs", power supplies, klystrons and other control elements.
 - Can define multiple "machines" linked together.

AML can serve as the starting point for a database for an accelerator complex.

Universal Accelerator Parser

Problem: Implementing software that can read in an AML lattice file can be a time consuming process. To do this for each analysis program represents a great duplication of effort.

Solution: An open source collaborative effort to implement a software library for reading AML files.

The Result: The Universal Accelerator Parser project.

UAP Overview

UAP Internal Structure

UAP uses a node tree to store information:

Basic node:

Attribute: Name = "Value"

UAP Tree

When the UAP software reads a lattice file it creates a tree. The root node has three children:

<UAPRoot>

<Input_Representation> <AML_Representation> <AML_Flat_Lattice>

- Mirrors the input lattice file.
- AML equivalent lattice.
- Expanded lattice with all expressions evaluated

Example

Mad input file:

! MAD input file q1: quad, 1 = 2*A s2: sextupole 11: line = (q1, 2*s2) use, 11 beam, energy = 5.2 <Input_Representation> <doc>"! MAD input file" </doc> <element name = "q1" key = "quadrupole" l = "2*A" /><element name = "s2" key = "sextupole" /> <line name = "11"> <element name = "q1" /> <element name = "s2" repeat = "2" /> <use line = "11" /> <beam energy = "5.2" /></Input_Representation>

Example Con't

```
<AML_Representation>
  <laboratory>
     <doc>"MAD input file"</doc>
     <element name = "q1" />
       <quadrupole />
       <length design = "2*A" />
     </element>
     <element name = "s2" />
       <sextupole />
     </element>
     <machine>
       <sector name = "l1">
          <element ref = "q1" />
          <sector repeat = "2">
             <element ref = "s2" />
          </sector>
       </sector>
       <root_sector ref = "l1" />
       <beam>
          <energy design = "(5.2) * 1e9" />
       </beam>
     </machine>
```

<AML_Flat_Lattice>

```
<machine>
     <tracking_lattice>
        <element name = "q1">
           <quadrupole />
           <length design = "6" />
        </element>
        <element name = "s2">
           <sextupole />
        </element>
        <element name = "s2">
           <sextupole />
        </element>
     </tracking_lattice>
     <beam>
        <energy design = "5.2e9" />
     </beam>
  </machine>
</AML_Flat_Lattice>
```

Adding a Language Module

To add a language module one needs to add parsing and translation routines:

Language Translation

Superposition

In AML machine elements may spatially overlap other elements:

<element name = "sol">
 <solenoid />
 <length = "2" />
</element>

<element name = "drft">
 <drift />
 <length = "2" />
</element>

<element name = "q2">
 <quadrupole />
 <length = "1" />
</element>

<sector name = "this_sect">
 <element ref = "sol" />
 <element ref = "drft" />
 <element ref = "q2"
 superimpose_at = "1.2"
 ref_element = "sol" />
 </element>
</sector>

Superposition Con't

AML_Flat_Lattice Subtree:

Controllers

AML provides a meechanism for defining "control room knobs:

```
<controller name = "ps1"
variation = "ABSOLUTE" >
<control element = "q1"
attribute = "multipole:k1"
coef = "2.3 * sin(ps1)" />
<control element = "sol"
attribute = "multipole:ks"
coef = "-5.7 * ps1" />
</controller>
```

AML Flat Lattice Subtree:

Project Status

- Accelerator Markup Language:
 - The basic specification exists.
 - Lots of room for development.
- Universal Accelerator Parser:
 - Currently under development.
 - Expect usable software in 3 6 months.
 - MAD-8 and MAD-X Language modules will be implemented.
 - Open source (GNU Lesser General Public License).
 - Source is available at SouceForge.com.
 - Written in C++.
 - Java version.
 - Fortran90 interface.
 - Anyone who is interested in invited to participate.
 - Project home page:

http://www.lns.cornell.edu/~dcs/aml

Conclusion

- The Universal Accelerator Parser software is currently under development for lattice parsing of AML, MAD-8, MAD-X, ...
- Its use holds the promise of greatly improving the interoperability between different programs.
- The UAP library contains bookkeeping routines to simplify the task of simulating the control system, and defining and manipulating complex beamline features such as physically overlapping elements, etc.

Thanks

Yves Roblin Mike Forster Theo Larrieu Tom Pelaia Frank Schmidt Peter Tenenbaum Nick Walker Mark Woodley Nikolay Malitsky **Richard Talman**