
Accelerator Description Formats

Nikolay Malitsky (BNL) and Richard Talman (Cornell)

malitsky@bnl.gov

Outline

Multi-Purpose Input Language

Application Programming Interface

Exchange Format

Propagator Format Extension

Composite Approach

Abstract: Being an integral part of accelerator software, accelerator description aims to provide
an external representation of an accelerator’s internal model and associative effects. As a result,
the choice of description formats is driven by the scope of accelerator applications and is usually
implemented as a tradeoff between various requirements: completeness and extensibility, user
and developer orientation, and others. Moreover, an optimal solution does not remain static
but instead evolves with new project tasks and computer technologies. This talk presents an
overview of several approaches, the evolution of accelerator description formats, and a comparison
with similar efforts in the neighboring high-energy physics domain. Following the Accelerator-Algorithm-
Probe pattern, we will conclude with the next logical step, Accelerator Propagator Description
Format (APDF), providing the flexible approach for specifying associations between physical elements
and evolution algorithms most appropriate for the immediate tasks

Accelerator Multi-Purpose Input Language

Earlier (and present) issues:

Variety of accelerator programs (E. Keil, Computer Programs in Accelerator
Physics, AIP, 1985): COMFORT, DIMAD, MAD, MARYLIE, SYNCH, TEAPOT,
TRANSPORT, ….

Variety of different projects
Variety of different tasks: design optimization, correction, tracking, instabilities,

…
Variety of algorithms. For example, non-linear approaches : aberration

formalism, Lie-algebra technique, symplectic integrator, differential algebra …

Solution:

A workshop for the standardization of MAD input language for beam optics
program, SLAC, May 1984.

Intend: Accelerator-oriented user-friendly Interface

MAD Input Language

Comprehensive accelerator description model based on two major concepts:
accelerator element and beam line

Classification of element types
Classification of element attributes
Conventional grammar based on a single rule :

label : keyword {, attribute}
Support of the procedural programming mechanisms such as subroutine, DO

loop, variables, and others

Major features:

FORTRAN constraints and limitations prevented the adoption of the MAD parser
as a sharable module among the different accelerator programs. This lead to the
development of numerous dialects.

The convenient set of the MAD programming features could not substitute the
power of standard programming languages, such as C or FORTRAN. That
prevented the description of the complex scenarios, such tune modulation, etc.

Open issues:

Application Programming Interface

Influential Examples: COSY INFINITY, MXYZPTLK

Intend: open accelerator programs for extensions and complex scenarios

Solution: replacing the accelerator input language parser with the standard
programming languages

INCLUDE ‘COSY’
PROCEDURE RUN;

PROCEDURE SQ PHI L B D;
….

ENDPROCEDUE;
OV 5 2 0;
UM ;
DL .1; { drift }
SQ 30 .2 .1 .1;
PM 6;
ENDPROCEDURE;
RUN;
END;

adding a new element type “on fly”

Application Programming Interface (Continued)

Open Issues:

strong bias towards the associated software environment.

Other examples:

PAC++ (1994): SBend hb = length*L + 2*PI/N*ANGLE;

UAL Perl API (1996): $hb->set(“l” => $length, “angle” => 2*$pi/$n);

ROOT Detector Geometry (now):

TGeoCombiTrans* ct_tpad31000 = new TGeoCombiTrans();
tpss->AddNode(tpad3,1000,ct_tpad31000);
ct_tpad31000->RotateX(0.0);
ct_tpad31000->RotateY(0.0);
ct_tpad31000->RotateZ(15.0);

Accelerator Exchange Format

ADXF 1.0 (1998)

Proposal
Structure: MAD sequence and UAL element attribute sets
Technology: XML

SXF (1998)

US-LHC collaboration; MAD-X, UAL
Structure: MAD sequence and UAL element attribute sets
Technology: C++, flex/yacc

TEAPOT fort.7 (1987)

TEAPOT
Structure: thin lens machine
Technology: Fortran

Intend: Context-free format for connecting the multi-lab and multi-system
heterogeneous environment

Accelerator
Exchange

Format

Editor

DB

Post-
processor

ADXF 2.0, AML (2005)

ADXF 2.0 New Objectives and Features

Inspired by E.Forest’s “fibre bundles” and ROOT Detector geometry
description (*)

Adds a new concept, “installed” element.

Addresses several issues:

families, buses, ramp, etc.

sharing of common “real” elements by more than one sector;

supporting of design and operational accelerator descriptions;

connecting of accelerator and detector models;

“The basic components used for building the logical hierarchy of the [detector]
geometry are the positioned volumes called nodes. Volumes are fully defined
geometrical objects having a given shape and medium and possible containing
a list of nodes. Nodes represent just positioned instances of volumes inside
a container volume”.

*ROOT Geometry Manual:

Dictionary of Accelerator Model Concepts

Accelerator is any sector selected by user.
Sector is a named sequence of frames with installed accelerator
components.
Frame is a layout of an installed component. It contains a relative position
(longitudinal position “at” or Survey coordinates), misalignments, and a
reference to an associated component, sector or accelerator element.
Accelerator Element is a leaf component in the accelerator tree
organization. There are many different types of accelerator elements (e.g.
sbend, quadrupole, etc.) But all of them have the same structure: name,
length, and an open collection of attribute sets. Element may have a
reference to the design element.
Element Attribute Set is a container of attributes relevant to the single
physical effect or feature (e.g. magnetic field, aperture, etc.)

sector frames or
element insertions

Frame ComponentSurvey
position

Sector

name

Element

design

*

at

reference

set of*

Offset

Rotation
AttributeSet

MField
ml, a, b

sector frames

type, length

UML-to-XML Schema Mapping

<element name = “element”>
<complexType>

<attribute name=“type” />
<attribute name=“name” />
<attribute name=“l” />
<attribute name=“design” />
<sequence>

<element name=“attributeSet” minOccurs=“0” maxOccurs=“unbounded” />
</sequence>

</complexType>
</element>

XML Schema:

Example:
<!– design quadrupole q1 -->
<element type=“quadrupole” name=“q1” l=“1.2” >

<mfield b = “0. 0.024“ />
</element>
<!– real quadrupole q1_1 with a set of measured multipole harmonics -->
<element name=“q1_1” design=“q1”>

<mfield b = “0. 0.025 0.0004” />
</element>

Definition: Element is a leaf component in the accelerator tree organization. There are
many different types of accelerator elements (e.g. sbend, quadrupole, etc.) ,
but all of them have the same structure: name, length, and an open collection
of attribute sets. Elements may have a reference to the design element.

ADXF 2.0 vs MAD-X Design Lattice description

LD0 := -RHOD0 * (THD0 - THDX);

D0MP08: SBEND, L := LD0, ANGLE := THD0 - THDX;

D008B: LINE = (OD0FLX, ERD0MP08, D0MP08, ELD0MP08, OD0FLA);

<constant name=“ld0” value = “-RHOD0 * (THD0 - THDX)”/>

<element type=“sbend” name=“D0MP08“ l = “ld0”>

<bend angle=“THD0 – THDX” />

</element>

<sector name=“D008B” line=“OD0FLX, ERD0MP08, D0MP08, ELD0MP08,
OD0FLA” />

<sector name=“D008B” >

<frame ref = “OD0FLX” />

<frame ref = “ERD0MP08” />

<frame ref = “D0MP08” />

<frame ref = “ELD0MP08” />

<frame ref = “OD0FLA” />

</sector>

MAD-X:

ADXF:

Two variants

ADXF 2.0 vs SXF Operational Lattice Description

bi8-dh0
sbend {

tag = d0mp08
at = 661.74662424
l = 3.58896623069
body = { kl = [-0.0151862520728] }
body.dev = { kl = [0 0 0.005476 0.033503 -16.112848 316.932487 1324982.270185 2770273.563708

-10008730294.68691 207554314866.7792]
kls = [0 0 -0.010166 0.024366 19.256818 316.932487 -318977.213193 -2770273.563708

2859637227.053402]
}

};

<sbend name = “d0mp08” l = “3.58896623069” angle= “-0.0151862520728 ”>
<element name = “bi8-dh0” design = “d0mp08” >

<mfield b = “0 0 0.005476 0.033503 -16.112848 316.932487 1324982.270185 2770273.563708
-10008730294.68691 207554314866.7792”

a = “0 0 -0.010166 0.024366 19.256818 316.932487 -318977.213193 -2770273.563708
2859637227.053402”

/>
</element>
<sector name=“blue” >

…
<frame at=“661.74662424” ref=“bi8-dh0”>

…
</sector>

SXF:

ADXF:

ADXF Accelerator vs ROOT Detector Models

Primitive Shape’sAttributteSet ’s of magnetic and RF fields,
e.g. MField, Bend, RfField, etc.

Type-specific
sets of attributes

There is no special volume attribute. But for the
sake of comparison, it could be associated with
a Shape EShapeType. There are several shape
types (primitives)

Component’s attribute used by the
corresponding tracker. There are several
element types, such as sbend, quadrupole

Element Type

Matrix: geometrical transformation from parent
to local reference frame.

Longitudinal position “at” or its Survey
coordinates in the sector local coordinate
system.

Position

Volume: fully defined geometrical object having
a given shape, medium, and possibly containing
a list of nodes.

Element: is a fully defined accelerator
object having a type, collection of attribute
sets, and possibly containing a list of node-
insertions.

Element

MaterialApertureCommon sets of
attributes

Node: positioned volume. It has a relative
position (geometrical transformation) and a
reference to a volume.

Frame: an layout of an installed accelerator
component. It has a relative position,
misalignments, and a reference to a
component (sector or element)

Frame

VolumeAssembly: container of nodes
(positioned volumes); it does not have its own
attributes, such as shape and medium

Sector: sequence of frames with installed
components. Sector does not have its own
attribute sets

Sector

Detector: any selected volumeAccelerator: any selected sectorAccelerator

ROOT Detector Model ADXF Accelerator ModelADXF Concept

Accelerator Propagator Description Format (APDF)

…
<link algorithm=“SectorTracker”

sector=“d1, qf1”/>
<link algorithm=“DriftTraker”

types=“Default”/>
<link algorithm=“MltTracker”

types=“Quadrupole|Sextupole”/>
<link algorithm=“BPM”

elements=“bpm1”/>
…

d1

qf1

qd1

sd1

bpm1

SectorTracker

DriftTracker

MltTracker

BPM

Collimator

RfCavityTracker

Catalog of Algorithms Accelerator (SXF

(Some) APDF-based applications

• Longitudinal Dynamics: sector 2D matrices + RF

• Dynamic Aperture: element-by-element tracker with type-based
associations

• Online model: sector maps + trackers of selected elements

• Instrumentation modeling (e.g. MIA, BTF) : conventional tracker
+ diagnostics devices

• Special localized effects (e.g. beam-beam): conventional tracker
+ propagator for special effect

• Space charge studies: conventional tracker + space charge
insertions + impedance

• Spin studies: Spin tracker as a wrapper of conventional tracker

• …

Composite Approach
based on our experience with UAL

C++ API
element.set(0.2*ANGLE + …

Perl API
$element->set (“angle” => 0.2, …);

UI has been divided into
1. Accelerator file (SXF, XML)
2. Perl User Shell with a dynamic collection of

arguments: $shell->run(“bunch” => $bunch, …);

1. Accelerator file
2. Propagator files
3. C++/CINT Shell with a dynamic collection of

arguments: shell.run(Args << Arg(“bunch”, bunch) << …);

1994

1996

1998

B.C. (Before C++)

