

Large Scale Parallel Wake Field Computations with PBCI

<u>E. Gjonaj</u>, X. Dong , R. Hampel, M. Kärkkäinen , T. Lau, W.F.O. Müller and T. Weiland

ICAP `06 Chamonix, 2-6 October 2006

Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik Schloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

- Introduction
- Numerical Method
- Parallelization Strategy
- Modal Termination of Beam Pipes
- PBCI Simulation Examples
- Conclusions

Introduction

Motivation for PBCI:

- 1. A new generation of LINACs with ultra-short electron bunches
 - a. bunch size for ILC: 300 µm
 - b. bunch size for LCLS: 20 µm
- 2. Geometry of tapers, collimators... far from rotational
 - a. 8 rectangular collimators at ILC-ESA in the design process
 - b. 30 rectangular-to-round transitions in the undulator of LCLS
- 3. Many (semi-) analytical approximations become invalid
 - a. based on rotationally symmetric geometry
 - b. low frequency assumptions (Yokoya, Stupakov)
 - c. detailed physics needed for high frequency wakes (Bane)

Introduction

TEM

ILC-ESA collimator #8

bunch length	300µm	
collimator length	~1.2m	
catch-up distance	~2.4m	

PITZ diagnostics double cross

bunch length	2.5mm	
bunch width	2.5mm	
structure length	325mm	

Tapered transition @PETRA III

There is an actual demand for:

1. Wake field simulations in arbitrary 3D-geometry

3D-codes

- 2. Accurate numerical solutions for high frequency fields (quasi-) dispersionless codes
- 3. Utilizing large computational resources for ultra-short bunches parallelized codes
- 4. Specialized algorithms for long accelerator structures moving window codes

An (incomplete) survey of available codes

			Dimensions	Nondispersive	Parallelized	Moving window
L	1982	BCI / TBCI	2.5D	Νο	Νο	Yes
ier Felde		ΝΟΥΟ	2.5D	Yes	Νο	Νο
gnetisch	ime	ABCI	2.5D	Νο	Νο	Yes
ektroma		MAFIA	2.5/3D	Νο	Νο	Νο
al eorie El	2002	GdfidL	3D	Νο	Yes	Νο
onaj et a ut für Th		ЕСНО	2.5/3D	Yes	Νο	Yes
E. Gj Instit	2006	PBCI	3D	Yes	Yes	Yes

- Introduction
- Numerical Method
- Parallelization Strategy
- Modal Termination of Beam Pipes
- PBCI Simulation Examples
- Conclusions

TECHNISCHE UNIVERSITÄT DARMSTADT

The FIT discretization

$$\begin{aligned}
& \oint_{\partial A} \vec{E} \cdot d\vec{s} &= -\frac{\partial}{\partial t} \iint_{A} \mu \vec{H} \cdot d\vec{A} \\
& \oint_{\partial A} \vec{H} \cdot d\vec{s} &= \iint_{A} \left(\frac{\partial}{\partial t} \varepsilon \vec{E} + \vec{J} \right) \cdot d\vec{A} \\
& \bigoplus_{\partial V} \mu \vec{H} \cdot d\vec{A} = 0 \\
& \bigoplus_{\partial V} \varepsilon \vec{E} \cdot d\vec{A} = \iiint_{V} \rho \, dV
\end{aligned}$$

$$\begin{aligned}
& \mathsf{FIT} & \mathsf{C} \, \hat{\mathbf{e}} = -\frac{d}{dt} \, \mathbf{M}_{\mu} \, \hat{\mathbf{h}} \\
& \widetilde{\mathbf{C}} \, \hat{\mathbf{h}} = \frac{d}{dt} \, \mathbf{M}_{\varepsilon} \, \hat{\mathbf{e}} + \hat{\mathbf{j}} \\
& \widetilde{\mathbf{C}} \, \hat{\mathbf{h}} = \frac{d}{dt} \, \mathbf{M}_{\varepsilon} \, \hat{\mathbf{e}} + \hat{\mathbf{j}} \\
& \widetilde{\mathbf{C}} \, \hat{\mathbf{h}} = \frac{d}{dt} \, \mathbf{M}_{\varepsilon} \, \hat{\mathbf{e}} + \hat{\mathbf{j}} \\
& \widetilde{\mathbf{S}} \, \mathbf{M}_{\varepsilon} \, \hat{\mathbf{e}} = \mathbf{q} \\
& \mathbf{S} \, \mathbf{M}_{\mu} \, \hat{\mathbf{h}} = 0
\end{aligned}$$

Topology of FIT:

 $\mathbf{C}^{T} = \tilde{\mathbf{C}}$ \Longrightarrow semidiscrete energy conservation

 $\tilde{\mathbf{S}}\mathbf{C} = \mathbf{S}\tilde{\mathbf{C}} = 0$ \implies semidiscrete charge conservation

Numerical Method

Using the conventional leapfrog time integration

$$\begin{pmatrix} \widehat{\mathbf{e}}^{n+1/2} \\ \widehat{\mathbf{h}}^{n+1} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \Delta t \, \mathbf{M}_{\varepsilon}^{-1} \mathbf{C}^{T} \\ -\Delta t \, \mathbf{M}_{\mu}^{-1} \mathbf{C} & \mathbf{1} - \Delta t^{2} \, \mathbf{M}_{\mu}^{-1} \mathbf{C} \, \mathbf{M}_{\varepsilon}^{-1} \mathbf{C}^{T} \end{pmatrix} \begin{pmatrix} \widehat{\mathbf{e}}^{n-1/2} \\ \widehat{\mathbf{h}}^{n} \end{pmatrix} - \begin{pmatrix} \Delta t \, \mathbf{M}_{\varepsilon}^{-1} \widehat{\mathbf{j}}^{n} \\ \mathbf{0} \end{pmatrix}$$

Behavior of numerical phase velocity vs. propagation angle

Idea: Reduce the integration of 3D equations to a sequence of 1D / 2D integrations along the coordinate axes

Longitudinal-Transversal (LT) splitting:

 $\mathbf{H}_{t} = \begin{pmatrix} \mathbf{0} & \mathbf{M}_{\varepsilon}^{-1} \mathbf{C}_{t}^{T} \\ -\mathbf{M}_{\mu}^{-1} \mathbf{C}_{t} & \mathbf{0} \end{pmatrix} \quad \text{does not affect longitudinal waves}$

$$\mathbf{H}_{l} = \begin{pmatrix} \mathbf{0} & \mathbf{M}_{l} \\ -\mathbf{M}_{\mu}^{-1}\mathbf{C}_{l} & \mathbf{M}_{l} \end{pmatrix}$$

 $\begin{pmatrix} \mathbf{I}_{\varepsilon}^{-1} \mathbf{C}_{l}^{T} \\ \mathbf{0} \end{pmatrix}$ integrable in 1D without numerical dispersion

$$\begin{pmatrix} \widehat{\mathbf{e}} \\ \widehat{\mathbf{h}} \end{pmatrix}^{n+1} = e^{-\mathbf{H}\Delta t} \begin{pmatrix} \widehat{\mathbf{e}} \\ \widehat{\mathbf{h}} \end{pmatrix}^n = e^{-\mathbf{H}_t \frac{\Delta t}{2}} e^{-\mathbf{H}_t \Delta t} e^{-\mathbf{H}_t \frac{\Delta t}{2}} \begin{pmatrix} \widehat{\mathbf{e}} \\ \widehat{\mathbf{h}} \end{pmatrix}^n + O(\Delta t^3)$$

modified time evolution

Second order Strang splitting

Idea: Reduce the integration of 3D equations to a sequence of 1D / 2D integrations along the coordinate axes

Replace each evolution operator with Verlet-leapfrog propagators:

$$\mathbf{G}_{l;t}(\Delta t) = \begin{pmatrix} \mathbf{1} - \frac{\Delta t^2}{2} \mathbf{M}_{\varepsilon}^{-1} \mathbf{C}_{l;t}^T \mathbf{M}_{\mu}^{-1} \mathbf{C}_{l;t} & \Delta t \mathbf{M}_{\varepsilon}^{-1} \mathbf{C}_{l;t}^T - \frac{\Delta t^3}{4} \mathbf{M}_{\varepsilon}^{-1} \mathbf{C}_{l;t}^T \mathbf{M}_{\mu}^{-1} \mathbf{C}_{l;t} \mathbf{M}_{\varepsilon}^{-1} \mathbf{C}_{l;t}^T \\ -\Delta t \mathbf{M}_{\mu}^{-1} \mathbf{C}_{l;t} & \mathbf{1} - \frac{\Delta t^2}{2} \mathbf{M}_{\mu}^{-1} \mathbf{C}_{l;t} \mathbf{M}_{\varepsilon}^{-1} \mathbf{C}_{l;t}^T \end{pmatrix}$$

Time discrete update:

$$\begin{pmatrix} \widehat{\mathbf{e}} \\ \widehat{\mathbf{h}} \end{pmatrix}^{n+1} = \mathbf{G}_t \left(\frac{\Delta t}{2} \right) \cdot \mathbf{G}_t \left(\Delta t \right) \cdot \mathbf{G}_t \left(\frac{\Delta t}{2} \right) \cdot \left(\frac{\widehat{\mathbf{e}}}{\widehat{\mathbf{h}}} \right)^n \quad \text{stable for:} \quad \sigma \coloneqq \frac{c\Delta t}{\Delta z} = 1$$

T. Lau, E. Gjonaj and T. Weiland, Time Integration Methods for Particle Beam Simulations with the Finite Integration Theory, FREQUENZ, Vol. 59 (2005), pp. 210

Implementing the LT splitting scheme

$$\begin{pmatrix} \widehat{\mathbf{e}} \\ \widehat{\mathbf{h}} \end{pmatrix}^{n+1} = \mathbf{G}_t \left(\frac{\Delta t}{2} \right) \cdot \mathbf{G}_l \left(\Delta t \right) \cdot \mathbf{G}_t \left(\frac{\Delta t}{2} \right) \cdot \left(\frac{\widehat{\mathbf{e}}}{\widehat{\mathbf{h}}} \right)^n$$

Numerical phase velocity and amplification vs. propagation angle

12

- Introduction
- Numerical Method
- Parallelization Strategy
- Modal Termination of Beam Pipes
- PBCI Simulation Examples
- Conclusions

Parallelization Strategy

A balanced domain partitioning approach

total computational domain

Equal loads assigned to each node: W_N

$$ode = \alpha_{Node} \cdot \sum_{Grid Points} w_i$$

Parallelization Strategy

Example: Tapered transition for PETRA III

15

Parallelization Strategy

Parallel performance tests

TEMF Cluster: 20 INTEL CPUs @ 3.4GHz, 8GB RAM, 1Gbit/s Ethernet Network

Parallel performance tests

TEMF Cluster: 20 INTEL CPUs @ 3.4GHz, 8GB RAM, 1Gbit/s Ethernet Network

- Introduction
- Numerical Method
- Parallelization Strategy
- Modal Termination of Beam Pipes
- PBCI Simulation Examples
- Conclusions

- 1. Indirect integration of potential for 2D-structures (Weiland 1983, Napoly 1993)
- 2. Generalization for 3D-structures (A. Henke and W. Bruns, EPAC'06, July 2006, Edinburgh, UK)

 $\left|\vec{G}^{TM} = \vec{e}_x \left(E_x^{TM} + cB_y^{TM}\right) + \vec{e}_y \left(E_y^{TM} - cB_x^{TM}\right) + \vec{e}_z E_z\right| \quad irrotational$

E. Gjonaj et al Institut für Theorie Elektromagnetischer Felder

TECHNISCHE

UNIVERSITÄT DARMSTADT

Modal Termination of Pipes

 $=\sum_{n}e_{z}^{n}(x,y)\int_{-\infty}^{\infty}d\omega C_{n}(\omega)\frac{1}{i(\omega/c-k_{z,n}(\omega))}e^{-i(\omega/c)s}$

spectral coefficient of *n-th (TM) mode*

 $W_n(s)$ n-th (TM) mode contribution

E. Gjonaj et al Institut für Theorie Elektromagnetischer Felder **TECHNISCHE**

UNIVERSITÄT DARMSTADT

TECHNISCHE UNIVERSITÄT DARMSTADT

Modal Termination of Pipes

1. Time domain integration in the inhomogeneous sections:

$$-\frac{1}{Q}\int_{-\infty}^{0} dz E_{z}(z,t) = \frac{z+s}{c}$$

- 2. Modal analysis at z = 0: $E_z(x, y, 0, t) \implies E_z^n(0, t), e_z^n(x, y)$
- 3. Compute spectral coefficients (FFT): $E_z^n(0,t) \Rightarrow C_n(\omega)$
- 4. Compute wake potential contribution per mode (IFFT):

$$\frac{C_n(\omega)}{i(\omega/c - k_{z,n}(\omega))} \implies W_n(s)$$

5. Compute wake potential transition in the outgoing pipe:

$$-\frac{1}{Q}\int_{0}^{\infty} dz \, E_{z}(z,t) = \frac{z+s}{c} = -\frac{1}{Q}\sum_{n}e_{z}^{n}(x,y)W_{n}(s)$$

TEM Modal Termination of Pipes

Using FD reconstruction in long intermediate pipes

22

- Introduction
- Numerical Method
- Parallelization Strategy
- Modal Termination of Beam Pipes
- PBCI Simulation Examples
- Conclusions

TESLA 9-cell cavity

bunch length	5mm		
bunch charge	1nC		
cavity length	1.5m		
no. of grid points	~80e6		
no. of processors	24		
simulation time	3hrs		

Simulation Examples

25

Simulation Examples

PITZ diagnostics double cross

E. Gjonaj et al Institut für Theorie Elektromagnetischer Felder

27

Simulation Examples

PITZ diagnostics double cross

(Ackermann, Hampel, Schnepp)

Wake field impact of the single components

Simulation Examples

Simulation Examples

- 1. PBCI: A fully 3D- code for wake field simulations
 - a. using the moving window approach
 - b. dispersionless in the bunch propagation direction
 - c. massively parallelized
 - d. using modal approach for "indirect" integration
 - e. using modal approach for pipe termination
- 2. Work still in progress for
 - a. including resistive wall wakes
 - b. developing an appropriate boundary conformal discretization
 - c. considering periodic structures of finite length

General split-operator schemes

$$\frac{d}{dt} \begin{pmatrix} \widehat{\mathbf{e}} \\ \widehat{\mathbf{h}} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & \mathbf{M}_{\varepsilon}^{-1} \mathbf{C}^{T} \\ -\mathbf{M}_{\mu}^{-1} \mathbf{C} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \widehat{\mathbf{e}} \\ \widehat{\mathbf{h}} \end{pmatrix} \quad (homogene)$$

(homogeneous) FIT equations

Denote:

$$\mathbf{y} = \begin{pmatrix} \widehat{\mathbf{e}} \\ \widehat{\mathbf{h}} \end{pmatrix}, \quad \mathbf{H} = \begin{pmatrix} \mathbf{0} & \mathbf{M}_{\varepsilon}^{-1} \mathbf{C}^{T} \\ -\mathbf{M}_{\mu}^{-1} \mathbf{C} & \mathbf{0} \end{pmatrix}, \quad \mathbf{H} = \mathbf{H}_{1} + \mathbf{H}_{2}$$

Solution after one time step:

exact time evolution operator

$$\frac{d\mathbf{y}}{dt} = \mathbf{H} \cdot \mathbf{y} \quad \Rightarrow \quad \mathbf{y}^{n+1} = e^{-\mathbf{H}\Delta t} \cdot \mathbf{y}^n = e^{-(\mathbf{H}_1 + \mathbf{H}_2)\Delta t} \cdot \mathbf{y}^n$$

approximate time evolution operator

A second order *Strang scheme*:

$$\mathbf{y}^{n+1} = e^{-\mathbf{H}_1 \frac{\Delta t}{2}} e^{-\mathbf{H}_2 \Delta t} e^{-\mathbf{H}_1 \frac{\Delta t}{2}} \mathbf{y}^n + O(\Delta t^3)$$