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Description of a Beam

An ensemble of particles with similar phase space coordinates is called a beam

The position and momenta are usually su¢ cient to describe the motion (spin
and charge)

We can choose a reference particle for which the motion is know (reference
curve or design orbit)

We can uniquely de�ne a coordinate system attached to the reference particle

Motion of a particle = Motion of the reference particle + Motion in relative
coordinates

The arclength s along the reference orbit is used as the independent variable
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What is a Transfer Map?

The transfer mapM relates ~Z (s0) to ~Z (s)

~Z (s) =M (s0, s)
�
~Z (s0)

�
For a deterministic system the transfer map is the �ow of ODEs d~zds =

~f (~z , s)

Transfer maps are origin preservingM
�
~0
�
=~0

M (s1, s2) �M (s0, s1) =M (s0, s2)

Transfer map of any Hamiltonian system satis�es symplectic condition

For weakly non-linear systems, like an accelerator system, the map can be
expanded as a Taylor series (Taylor Map)
Due to practical limitations we have to truncate the map at certain order
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Method can be used to compute transfer map of order � 3
Analytic or local Taylor expansion (multipole decomposition) of the magnetic
�eld should be speci�ed
Present/future accelerators require much higher order description
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Obtaining Maps using DA
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DA methods were introduced in 1988 to compute maps to in principle
arbitrary order

Analytic formula or local expansion of the �eld should be speci�ed
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Maps from measured �eld data or source distribution

Usual practice: Magnetic �eld is approximated by an analytic model. Fringe
�elds are treated separately

High resolution spectrographs, LHC (and future HEP accelerators) require
magnets to be modelling to high accuracy

However, high accuracy require the use of realistic �elds obtained from:

experimental measurements
3D FEM magnet modelling codes like TOSCA
the knowledge of current coil con�guration and shielding

Methods in use:

Using �eld data on the mid-plane or on the central axis (unstable, large error)
Methods using image charge (inversion of large matrix, lot of guess work)

Current methods can not obtain high accuracy maps directly from the
measured data or the source distribution.
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There is a need for new techniques to extract
1 local expansion of the �eld from measured data (Laplace BVP)
2 local expansion of the �eld from current distribution (Biot-Savart Law)
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The Laplace BVP

r2φ (~r) = 0 in the bounded volume Ω � E3

rφ (~r) = ~g (~r) on the surface ∂Ω

Goal:

Provide solution as local expansion of the �eld ( φ (�!r ) and ∂nxi φ (
�!r ))

Highly accurate and work for case with large variation of �eld in the region of
interest

Computationally inexpensive

Provide information about the �eld quality of measured data

Analytic closed form solution can only be found for few problems with certain
regular geometries (separation of variables method, power series, �nite Fourier
transform)
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Numerical Methods

Finite Di¤erence, Finite element methods

Numerical solution as data set in the region of interest
Relatively low approximation order
Often large number of mesh points and careful meshing required
Usually multipole expansion of the �eld can not be computed

Methods using surface data

Boundary integral methods and source-based �eld models

Require knowledge of Green�s function for the problem
Field inside of a source free volume due to a real sources outside of it can be
exactly replicated by a distribution of �ctitious sources on its surface. Error due
to discretization of the source falls o¤ rapidly as the �eld point moves away
from the source.

Methods using the Helmholtz theorem
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2D Laplace equation

r2φ (~r) = 0 in the bounded volume Ω � E2

Using Cauchy�s formula

φ (α) =
1
2πi

I
∂Ω

φ (z)
z � α

dz

α is a point within Ω
Cauchy�s formula is an integral representation of f which permits us to
compute f anywhere in the interior of ∂Ω, knowing only the value of f on Ω
Kernel is smoothing

Simple extension does not exist for 3D
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The Helmholtz Theorem

Any vector �eld
�!
B that vanishes at in�nity can be written as the sum of two

terms, one of which is called �irrotational� and the other �solenoidal� as

�!
B (~x) = ~r�~At (~x) + ~rφn (~x) where

φn (~x) =
1
4π

Z
∂Ω

~n (~xs ) �
�!
B (~xs )

j~x �~xs j
ds � 1

4π

Z
Ω

~r � �!B (~xv )
j~x �~xv j

dV

~At (~x) = �
1
4π

Z
∂Ω

~n (~xs )�
�!
B (~xs )

j~x �~xs j
ds +

1
4π

Z
Ω

~r��!B (~xv )
j~x �~xv j

dV

∂Ω is a surface which bounds the volume Ω
~xs and ~xv denote points on ∂Ω and within Ω
~r denotes the gradient with respect to ~xv
~n is a unit normal vector pointing away from ∂Ω
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If ~B is the magnetic/electric �eld in the source free region, we have
~r��!B (~xv ) = 0 and ~r �

�!
B (~xv ) = 0, and the volume integral terms vanish

φn (~x) and ~At (~x) are completely determined from the normal and the
tangential �eld data on surface ∂Ω via

φn (~x) =
1
4π

Z
∂Ω

~n (~xs ) �
�!
B (~xs )

j~x �~xs j
ds

~At (~x) = �
1
4π

Z
∂Ω

~n (~xs )�
�!
B (~xs )

j~x �~xs j
ds

�!
B (~x) = ~r�~At (~x) + ~rφn (~x)

The Helmholtz theorem can be used to �nd �eld directly from the surface
�eld data

Integral kernels that provides interior �elds in terms of the boundary �elds or
source are smoothing

Since the expressions are analytic, they can be expanded at least locally

Shashikant L. Manikonda, Martin Berz, Kyoko Makino (Michigan State University)A Highly Accurate 3-D Magnetic Field Solver 13 / 37



Implementation

Split domain of integration ∂Ω in to smaller regions Γi , i = 1 . . .N
Describe the surface element Γi in two variables~rs (xs , ys )
Expand the kernel to higher orders in two surface variables (xs , ys ) and the
three volume variables (x , y , z)

The dependence on the surface variables (xs , ys ) are integrated over surface
sub-cells Γi , which results in a highly accurate integration formula
The dependence on the volume variables (x , y , z) are retained, which leads to
a high order �nite element method

By using su¢ ciently high order, high accuracy can be achieved with a small
number of surface elements

Implemented using the high-order multivariate di¤erential algebraic tools
available in the arbitrary order code COSY INFINITY

local expansion, surface integration, curl and divergence
Field representation to any order without any manual computations

Shashikant L. Manikonda, Martin Berz, Kyoko Makino (Michigan State University)A Highly Accurate 3-D Magnetic Field Solver 14 / 37



Analytic example: Bar magnet

Interior of the magnet: �0.5 � x � 0.5, jy j � 0.5, and -0.5 � z � 0.5
Analytic solution for the magnetic �eld are know
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Analytic solution

By (x , y , z) =
B0
4π

2

∑
i ,j=1

(�1)i+j
"
arctan

 
Xi � Zj
Y+ � R+ij

!
+ arctan

 
Xi � Zj
Y� � R�ij

!#

Bx (x , y , z) =
B0
4π

2

∑
i ,j=1

(�1)i+j
"
ln

 
Zj + R

�
ij

Zj + R
+
ij

!#

Bz (x , y , z) =
B0
4π

2

∑
i ,j=1

(�1)i+j
"
ln

 
Xj + R

�
ij

Xj + R
+
ij

!#

where Xi = x � xi , Y� = y0 � y , Zi = z � zi , and R�ij =
�
X 2i + Y

2
j + Z

2
�
� 1
2

Using the analytic formulas we specify magnetic �eld on the surface enclosing
the volume of interest

We use the Helmholtz method to compute the �eld inside

We compare the results with the analytic formulas (three plots)
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Performance of surface integration method

Choose a cube of edge length 0.8 centered at origin
each face is covered by 44� 44 mesh (surface elements)
Field data is speci�ed on the surface mesh using analytic formulas
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Split the cube into 4� 4� 4 volume elements of width 0.2
Express magnetic �eld in each volume element by a local expansion about the
center of the element

The RMS average error for 1000 points

Shashikant L. Manikonda, Martin Berz, Kyoko Makino (Michigan State University)A Highly Accurate 3-D Magnetic Field Solver 18 / 37



Dependency of the average error on the number of volume element.
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Parallel implementation

Contribution due to each surface element is independent of the other surface
elements

The large summation over all the surface elements can be parallelized

NERSC (National Energy Research Scienti�c Computing Center) IBM
RS6000 Seaborg Cluster consisting of 6080 processors

380 computing nodes with each node having 16 processors (shared memory
pool of 16 to 64 GBytes)
Communication between the processors within a node is much faster

Implementation

(NPR processors) = (N2 groups)�(N1 processors)
N1 = INT

�
2 �
p
NPR

�
Two parallel loop are used to make the summation e¢ cient and also minimizes
cross-communication
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Magnetic �eld due to arbitrary current distribution

Magnetic �eld due to arbitrary current distribution is computed using the
Biot-Savart law or Ampere�s law

Implementation is similar to the Laplace solver case

Discretize the domain into current elements
DA framework is developed to describe a current element for the line, surface
and volume case
Expand the kernel for the Biot-Savart law or Ampere�s law
Integrate with respect to the variables describing the current elements
Sum over all the current elements

The curl and the divergences for the �eld computed is always zero in the
current free region.
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Tools

Due to their frequent use in the accelerator magnet applications, a dedicated set
of tools has been written in the code COSY INFINITY for

In�nitely long rectangular cross section current wire(2D design)

Finite length rectangular cross section current wire

Current coil of rectangular cross section (3D design)

In addition to extracting the transfer maps these tools can be used to design
magnets
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Quadrupole example: ~B (x , y , s) = (kqy , kqx , 0)
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Extracting transfer map for analytic quadrupole magnet
case

Quadrupole example: ~B (x , y , s) = (kqy , kqx , 0)

Transfer map from quadrupole �eld is know

From the analytic formulas we create surface data and extract transfer map

Di¤erence between the map computed using the analytic formulas and
surface data
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Design of quadrupole magnet with an elliptic cross section

For beam wider in the dispersive plane than the transverse plane it is cost e¢ cient
to utilize magnets with elliptic cross sections
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18 superconducting racetrack coils (�108A/m2)
Rhombic prism support structure (elliptic aperture 1:2)
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Quad coil

Oct coil

Hex coil

Quad coil

Oct coil
Hex coil

Deca coil

Deca coil

Dipole coil

0.5 m

0.25 m

0.1 m

0.12 m

"+" produces a positive multipole term

Inner wires produce quadrupole and octupole �elds

Outer wires produce hexapole and decapole �elds

2D case: two In�nitely long current wires

3D case: Current Coil
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The relationship between the currents and the principle multipole components can
be given by a simple matrix

2666664
By0
By
(x )

By
(xx )

By
(xxx )

By
(xxxx )

3777775 =
266664

0 0 �0.25 �0.04 +0.37
+5.76 +2.40 0 0 0
0 0 �3.89 �2.08 �1.45

�0.40 +15.44 0 0 0
0 0 +1.66 �2.32 +2.99

377775 �
266664
QI
OI
HI
DI
I

377775

By
(yy ) = �B

y
(xx )

By
(xyy ) = �3B

y
(xxx )

�
By
(xxyy )

6
= By

(yyyy ) = B
y
(xxxx )

Bx(y ) = B
y
(x )

Bx(xy ) = 2B
y
(xx )

Bx(xxy )
3

= �Bx(yyy ) = B
y
(xxx )

Bx(xxxy ) = �B
x
(xyyy ) = 4B

y
(xxxx )
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Operational plot

Quadrupole and the octupole
terms Hexapole and the Decapole terms

The coe¢ cients are computed at the horizontal half aperture
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3D Design: Fringe �eld

The plot of the magnetic �eld on the midplane, y = 0 m. Only the magnetic �eld
in the �rst quadrant is shown.
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MAGNEX spectrometer dipole magnet

Magnetic �eld data is measured on the grids for 7 di¤erent planes
h∆Bi/Bi = 5� 10�4
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Contour plot of magnetic �eld errors for the mid-plane (region 1)
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Super-FRS Quadrupole Magnet

The TOSCA model for the quadrupole magnet ∆B/B = 70� 10�4

Length of 0.8 m with the usable horizontal aperture of �0.2 m and the
vertical aperture of �0.1 m
The surface was discretized with a step size of 5 mm, leading to a
discretization of 80�40�320 surface elements.
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The di¤erence between the relative error of the y component of the magnetic
�eld on the mid plane for �rst quadrant
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The RMS average di¤erence between the TOSCA simulation result and the
new Laplace solver technique versus the volume element length
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Extracted Transfer map to second order
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Conclusion

Using of DA methods multipole expansion solution of the �eld to high order
can be obtained. Which also leads to small number of volume elements

Using the surface data and Helmholtz theorem leads to technique that are
naturally smoothing

Fields obtained are Maxwellian

We can combine the two techniques to get Poisson solver

Design of accelerator magnets is possible with the tools developed
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The DA frame work developed can be used for other PDEs for which the
solution can be expressed as an integral equation
Can be extended to time dependent electromagnetic problems using 4D
equivalent of Helmholtz theorem
Can be used to solve 6D Vlasov equation
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