
Massive Tracking on
Heterogeneous Platforms

Eric McIntosh
(Attached to AB/ABP CERN)

eric.mcintosh@cern.ch

2

Computing at CERN

• Dominated by the needs of the
experiments

• Accelerator design, a small fraction of the
various mainframes (1964 – 1998) and the
“PARC” IBM workstation cluster

• In 1997 the LHC Machine Advisory
Committee recommended more tracking

• The “Numerical Accelerator Project”, NAP

3

NAP Evolution

• A 10 processor Digital/Compaq Alpha
TurboLaser (800 CERN Units)

• Added 10 Workstations (1,300 CUs)
• Overlapped by 20 DUAL 800Mz PIII’s

(7,200 CUs)
• Today 64 Dual 2.4GHz PCs (51,200 CUs)
• Operated as “Fair Share” of the central

Linux LSF Batch system lxbatch

4

Tracking Studies

5

Beam Collimation

6

The Idea (not original)
• Studies were still typically 1 tune, 60 seeds, up to 8

amplitudes, and 5 angles
• Use ~5000 Windows desktops at CERN to run

SixTrack, a highly optimised LHC tracking program
• SixTrack is standard F77 and part of SPECFP2000
• Only 50KB (500KB) IN and < 2MB (6MB) OUT for ~ 1

to 10 hours CPU – ideal for distribution
• At least double the tracking capacity and potentially

provide an order of magnitude increase for zero financial
investment

7

Initial Problems

• No compatible WINDOWS graphics – just
dummied out the HBOOK calls

• LineFeed in Windows text files – remove
them on Linux when retrieving the result

• Lost Particle processing 1000 times slower
– check more frequently to avoid NaNs
and Infs

8

CPSS Project

• A. Wagner CERN/IT/WINDOWS provided a
screen saver, Web Server and PERL interfaces
for job submission and result retrieval

• SixTrack Checkpoint/Restart, vital for rapid
release of the PC and long term run efficiency

• Transparent (almost) SixTrack run environment
on Linux

• Worked well ………until occasional RESULT
differences

9

First real problem
• 1500 jobs, 60 seeds, 5 amplitudes, 5 angles,

(v64lhc.D1-D2-MQonly-inj-no-skew) for 10,000
turns

• The final results, the minimum, average and
maximum Dynamic Aperture were within 1% of
the lxbatch results

• The average DA was within 3 parts in 1000
• Tried 600 seeds/15,000 jobs as final pre-

production
• ……BUT…..

10

Result Comparison
LSF/Linux Results

Min Ave Max Angle
v64lhc.D1-D2-MQonly-inj-no-skew5 1 11.27 12.20 13.17 15.00
v64lhc.D1-D2-MQonly-inj-no-skew5 2 12.18 13.69 15.46 30.00
v64lhc.D1-D2-MQonly-inj-no-skew5 3 13.90 14.83 16.14 45.00
v64lhc.D1-D2-MQonly-inj-no-skew5 4 16.29 17.32 18.08 60.00
v64lhc.D1-D2-MQonly-inj-no-skew5 5 15.50 16.30 17.34 75.00

Windows CPSS Results

v64lhc.D1-D2-MQonly-inj-no-skew5 1 11.17 12.21 12.97 15.00
v64lhc.D1-D2-MQonly-inj-no-skew5 2 12.18 13.66 15.24 30.00
v64lhc.D1-D2-MQonly-inj-no-skew5 3 13.53 14.80 16.09 45.00
v64lhc.D1-D2-MQonly-inj-no-skew5 4 16.41 17.31 -18.00 60.00
v64lhc.D1-D2-MQonly-inj-no-skew5 5 15.60 16.30 17.15 75.00

11

One bit too many…….

• Careful checking of duplicate results, for one
specific seed, identified a difference in the
distance in phase space, between a particle
pair, when computed on Windows 2000 and on
Windows XP.

• Exhaustive analysis identified one number
3.756403155274550e-09 was being input as
HEX BE3022357D9B0651 on Windows 2000 as
compared to HEX BE3022357D9B0650 on
Windows XP (and on Linux)

12

…..but how often? how important?

• 600 fort.16 input files (Multipole Errors)
• 2364 blocks of 40 double-precision

numbers
• 100,000 turns each involving 10,000 steps
• Quickly ran 2 times 600 jobs on

W2000/XP
• 505 files affected (95 OK) with from 1 to 7

numbers being one bit too large
• Total of 1115 errors in 60 million numbers

13

A known problem

• Depends on Compiler/OS
• Could be fixed by (over-)specifying the

input values
• Decided to buy the LAHEY-FUJITSU lf95

compiler for WINDOWS (already on Linux)
to replace the obsolete COMPAQ compiler

• Surprisingly? Gave “IDENTICAL” results
on Windows and Linux

14

IEEE 754

• Defines unique reproducible result for +, -, *, /,
and sqrt – the correctly rounded result being the
floating-point number closest to the exact result

• It is incomplete and open to interpretation
• Needs to be combined with the language

standard
• Strict compliance conflicts with performance
• Does NOT cover Elementary Functions

15

Floating-Point issues
(Double Precision)

• Extended (internal) 80-bit Precision EP
• (Double) rounding applied arbitrarily
• Fused Multiply Add
• SSE2

• DISABLE EP, in fact the default with lf95
• (“everything” else is disabled anyway)

16

EP Disabled

• NOT really practicable with libm and
probably other libraries

• May introduce new problems in borderline
evaluations

• Could affect performance (convergence)
• I contend that these cases are best solved

otherwise

17

Compilation/Linking

• lf95 -o1 --tp -static
• -O/-o1 provide almost all optimisation
• -static is obviously required for portability
• --tp “generates Pentium code” (other

options are --tpp Pentium Pro/Pentium II
or --tp4 for Pentium 4)

• Success? Almost…………………

18

The beam-beam case
• While running some 400,000 2 hour jobs

covering 1000 angles to prove CPSS
• Tried a study involving beam-beam interactions

over a million turns
• Immediately detected a few result differences

between INTEL IA32 and ATHLON AMD64 (also
INTEL IA64)

• Traced back to an “exp” function - Not easy, but
do-able with binary output

• Abandon the goal of reproducibility??? Abandon
the whole idea!!!

19

Investigation

• Verified that IA64 was same as AMD64
(but see later)

• Found the log function similarly afflicted
• WWW search – insulted on a News Group
• Most problems/solutions eliminated

because of the simple code generation
• Found several relevant libraries:MPFR,

libultim IBM, libmcr SUN, crlibm Ecole
Normale Superior LYON

20

The libraries

• MPFR – arbitrary precision – slow
• libultim – 800 bits – too much/not enough

and no longer supported
• libcmr – arbitrary precision – slower
• crlibm – double precision – optimised and

portable to any IEE-754 compliant CPU
• Finally adopted CRLIBM from the Ecole

Normale Superieur at Lyon

21

crlibm

• Delivers correctly rounded double
precision results for the elementary
functions

• Proven to do so
• Performance “comparable” to libm on

average (optimised versions available for
different platforms)

• REQUIRES EP DISABLED
• Really more than I needed

22

Crlibm functions

• EXP, LOG, LOG10, SIN, COS, TAN
• ATAN, SINH, COSH
• ASIN, ACOS, ATAN2 are now available

– I wrote them in terms of ATAN to be portable
but NOT necessarily correctly rounded

• Each function has four rounding modes –
nearest, up, down, to zero

• E.g. exp_rn, exp_ru, exp_rd and exp_rz

23

A Solution

• Installed crlibm (portable for Linux and
Windows with gcc and Lahey-Fujisu C)

• The numerical differences disappeared
• Performance was at worst 10% slower in

the most difficult beam-beam case (but on
portable code)

• The only subsequent numerical
differences have been traced to failing
computers (3 desktops and 1 lxbatch)

24

Some simple test results
• ULP – One Unit in the Last Place of the mantissa

of a floating-point number (one part in roughly
10**16)
– libm/crlibm IA32: 304 differences of 1ULP
– libm IA32/IA64: 5 differences of 1ULP
– libm IA32/AMD64: 7 differences of 1ULP
– libm IA64/AMD64: 2 differences of 1ULP
– libm/libm NO EP: 134623 differences of 1ULP

• NO differences with exp_rn

• 1,000,000 exp calls with random arguments
between -0.5 and 0.5

25

…and with lf95

– lahey/crlibm IA32: 134645 differences of
1ULP

– lahey IA32/IA64: 7 differences of 1ULP
– lahey IA32/AMD64: 7 differences of 1ULP
– lahey IA64/AMD64: 4 differences of 1ULP

• NO differences with exp_rn

26

crlibm exp performance

Pentium 4 Xeon gcc 3.3

MaxMinAverage

2047361463623299mpfr
310563244210libultim
41484316432crlibm
5528236365libm

27

When quadruple precision is not
enough – The Table Maker’s Dilemma

• Rounding the approximation of f(x) is not always
the same as rounding f(x)

• Worst case for exp(x),
x=7.5417527749959590085206221e-10

• Binary example with x=1.[52]1*2-53
• exp(x)=1.[51]001[104]1010101…correctly

rounded to 1.[51]01 in Double
• quad (112 bit) approximations, 1.[51]010[58]00,

1.[51]001[58]11, 1.[51]001[58]10, are all within 1
Quad ULP, but rounding the last gives an
incorrectly rounded Double result.

28

BOINC

• The Berkeley Open Infrastructure for
Network Computing (c.f SETI@home)

• LHC@HOME – up to 60,000 computers
• Running LHC Tracking (intermittently) for

more than twelve months so far
• Beam-beam estimated to need 600,000

one million turn 10 hour jobs
• Currently the service is being moved to UK

29

BOINC ………

• Some 400,000 cases completed
• Every jobs is run three times (at least) and

only identical results are accepted (NO
EPSILON required)

• Estimate 3% of results are erroneous,
which is average for BOINC applications,
but these are of course rejected

30

Conclusions and Questions

• Am I obsessed about a numerical
difference of 1ULP? It IS a problem for
tracking studies, and other “divergent”
applications like climate prediction or
molecular dynamics

• Having eliminated ALL numeric
differences SixTrack can be run on any
Pentium or compatible PC

• Support IEEE and the revised standard

31

The next steps

• Add parentheses to SixTrack code to
provide IDENTICAL results with different
compilers, different optimisation levels,
and on any IEEE-754 compliant machine

• Extend to C/C++ C99 compliant
applications and compilers?

• Other applications?
• Verify the GRID as an alternative to

BOINC and CPSS

