Google "Alain Bossavit at TUT" for slides, papers, etc.

Alaín Bossavít

Laboratoire de Génie Électrique de Paris (CNRS)

Geometrical methods in computational electromagnetism Nuts and bolts of a discretization toolkit

The workshop furníture

- Affine 3D space, with associated vector space, but no orientation, no metric structure (for a while)
- Points, vectors, multivectors (Grassmann algebra)

• Smooth sub-manifolds, with own orientation:

The workshop furníture

- Affine 3D space, with associated vector space, but no orientation, no metric structure (for a while)
- Points, vectors, multivectors (Grassmann algebra)

• Smooth sub-manifolds, with own orientation:

The workshop furníture

- Affine 3D space, with associated vector space, but no orientation, no metric structure (for a while)
- Points, vectors, multivectors (Grassmann algebra)

• Smooth sub-manifolds, with own orientation:

The concept of chain:

What about dual objects (línear functionals), called cochains?

Chains model probes. Cochains model fields.

Small probe <—> p-vector

Local field <--> p-covector

Faraday's law, now straightforward:

(Defining charge **q**)

(Charge conservation)

(Ampère)
$$-\partial_t \int_{\Sigma} d + \int_{\partial \Sigma} h = \int_{\Sigma} j \quad \forall \sum$$

 $b = \mu h$ $d = \epsilon e$
(Faraday) $\partial_t \int_{S} b + \int_{\partial S} e = 0 \quad \forall S$
 $\int_{\Omega} q = \int_{\partial \Omega} d \qquad \Omega \qquad \partial_t \int_{\Omega} q + \int_{\partial \Omega} j = 0$

$$\Omega^{\mathbf{u}} \quad (\Omega^{\mathbf{v}}) \quad \partial_t \int_{\Omega} \mathbf{q} + \int_{\partial \Omega} \mathbf{j} = \mathbf{q}$$

Determines a metric ("v-adapted")

(Select reference 3-vector Δ and real λ . Then $\lambda^2 v \wedge \mathbf{v} v = |v|_{\lambda}^2 \Delta$, hence a norm, scaling as λ . Adjust λ for λ -volume of Δ to be λ^2 .)

By duality, yields Hodge map on covectors:

Hence relation h = vb (and also $d = \varepsilon e$) between cochains, i.e., *fields*

So space geo-*metry* (in the strong sense of assigning *metric* properties—distances, areas, angles, etc.—to the space we inhabit) amounts to specifying *constitutive laws* in electrodynamics

- Should not sound strange: Don't we use *light rays* to measure the Earth?
- Why *two* metrics ($\mathbf{v} \equiv \boldsymbol{\mu}^{-1}$ and $\boldsymbol{\epsilon}$)? Because 3D shadows of Minkowski's 4D metric
- $\epsilon \neq \epsilon_0$ and $\mu \neq \mu_0$ when we wish to *ignore* details of microscopic interactions and *geometrize* them wholesale

Maxwell, in terms of cochains:

$$-\partial_{t} \int_{\Sigma} d + \int_{\partial \Sigma} h = \int_{\Sigma} j \quad \forall \sum$$
$$-\partial_{t} d + dh = j$$
$$d = \varepsilon e$$
$$h = \mathbf{v} b$$
$$\partial_{t} \int_{S} b + \int_{\partial S} e = 0 \quad \forall S \quad \mathbf{v}$$

Discretization strategy: Instead of all S, Σ , enforce this for finite family of surfaces spanned by faces of a mesh But Hodge requires 1–1 pairing of edges and faces, so...

Select centers inside primal simplexes. Join them to make dual.

DR = 0, RG = 0(in analogy with grad, rot, div) Incidence matrices for dual are transposes D^{t}, R^{t}, G^{t}

Discretization: General Principles

Replace generic surfaces S, Σ ,

as well as abstractions of voltmeter, fluxmeter, etc.,

by cell-chains (i.e., based on mesh cells)

- Primal cells when emf's, or magnetic "fluxes" are concerned (integrals of fields e, a, b, ...)
- Dual cells when genuine, *substantial*, fluxes are concerned (energy, charge, momentum...)
 (integrals of fields h, d, j, ..., and more involved things like —to appear later e ^ h, i b ^ j, i b ^ h, i d ^ e, ...)

Replace fields by cell-cochains

thus, field modelled by "DoF array" of scalar values, one per cell of right kind

Enforce Faraday's law, $\partial_t \int_S \mathbf{b} + \int_{\partial S} \mathbf{e} = 0$ not for all surfaces **S**, but for all those made of primal faces. This requires (when **S** = f, a primal face),

Note *automaticity* of process: Equations forced on us by implementation decisions taken so far.

Metric structure: to any twisted vector v, associate a bivector vv.

But according to "general principles", only available twisted vectors, in discrete framework, are the f's; and only bivectors, the f's. Therefore, define:

$$\widetilde{\mathbf{vf}} = \sum_{\mathbf{f}' \in \mathcal{F}} \mathbf{v}^{\mathbf{ff}'} \mathbf{f}'$$

By duality, the \mathbf{v}^{ff} make the needed matrix \mathbf{v}

Compatibility with earlier map \mathbf{v} (given reluctivity "tensor") provides convergence criterion for numerical analysis.

If dual mesh barycentric, use the "Galerkin Hodge", defined as

$$\mathbf{v}^{\text{ff'}} = \int \mathbf{v} \, \mathbf{w}^{\text{f}} \cdot \mathbf{w}^{\text{f'}}$$
$$\mathbf{\varepsilon}^{\text{ee'}} = \int \mathbf{\varepsilon} \, \mathbf{w}^{\text{e}} \cdot \mathbf{w}^{\text{e'}}$$

where w^s is Whitney form of simplex s

Then, automatic spatial discretization of Maxwell's equations: $-\partial_t \mathbf{d} + \mathbf{R}^{\mathrm{t}} \mathbf{h} = \mathbf{j}$ $\partial_t \mathbf{b} + \mathbf{Re} = 0$ $\mathbf{h} = \mathbf{v} \mathbf{h}$ d = 2hence (using leap-frog) a Yee-like scheme: $(\mathbf{v} = \mathbf{\mu}^{-1})$ **b** k - 1/2k + 1/2 $\frac{\mathbf{e}^{\mathbf{k} + \mathbf{i}} - \mathbf{e}^{\mathbf{k}}}{\delta \mathbf{t}} + \mathbf{R}^{\mathbf{t}} \mathbf{v} \mathbf{b}^{\mathbf{k} + 1/2} = \mathbf{i}^{\mathbf{k} + 1/2}$

Whitney forms

Once obtained the cochains **b**, **e** (or **a**), **h**, **d**, what about the fields themselves?

or else:

Are there objects that would be to differential forms what finite elements are to functions, i.e., to 0-forms?

 $\mathbf{b} \rightarrow \sum_{\mathbf{f} \in \mathcal{F}} \mathbf{b}_{\mathbf{f}} \mathbf{w}^{\mathbf{f}}$

Whitney forms k k k k 1 0 3 2 W 1 1 1 1 y (n n n n Х m m m m $\{k, l, m, n\}$ $\{l, m, n\}$ $\mathbf{W}^{\{m, n\}}$ $\mathbf{W}^{\mathbf{n}}$ λ^n $\lambda^n d\lambda^m - \lambda^m d\lambda^n$ $2[\lambda^{l} d\lambda^{m} \wedge d\lambda^{n} + \dots + \dots]$ $6 d\lambda^k \wedge d\lambda^l \wedge d\lambda^m$

The tools in the box:

Cell chains Surfaces, curves, etc. Fields b, h, ... - Cell cochains (DoF arrays) b, h, ... Constitutive laws \longrightarrow "Discrete hodges", ϵ, ν, σ ... G, R, D (primal side), grad, rot, div $-\mathbf{D}^{t}$, \mathbf{R}^{t} , $-\mathbf{G}^{t}$ (dual side) \blacktriangleright "wedge" product, $e \land h$, $i \land e$ products, $E \times H$, $J \cdot E$ $-\partial_t \mathbf{d} + \mathbf{R}^t \mathbf{h} = \mathbf{j}, \ \mathbf{d} = \mathbf{\varepsilon}\mathbf{e}$ $-\partial_{+}D + rot H = J, D = \varepsilon E$ $\partial_{\mathbf{f}} \mathbf{b} + \mathbf{R} \mathbf{e} = 0, \ \mathbf{h} = \mathbf{v} \mathbf{b}$ $\partial_t B + rot E = 0, H = \nu B$ $-\mathbf{G}^{\mathsf{L}}\mathbf{d} = \mathbf{q}, \ \mathbf{D}\mathbf{b} = 0$ div D = Q, div B = 0etc. $E = - \operatorname{grad} \varphi - \partial_t A$ $\mathbf{d} = -\mathbf{G} \, \mathbf{\varphi} - \partial_{\mathbf{t}} \mathbf{a}$

Good, but not enough:

What about "force related" entities, like

- $E \times H$ (Poynting) ?
- $Q(E + v \times B)$ (Lorentz)?
- $J \times B$ (Laplace) ?
- $B \otimes H$ (Maxwell) ?

Heuristic hint: force is a covector, cf. $v \rightarrow \langle v; f \rangle$

Flux of Poynting "vector"

Actually,
$$\int_{\Sigma} \mathbf{e} \wedge \mathbf{h}$$
, with Σ a dual 2-chain
Knowing DoF-arrays \mathbf{e} , \mathbf{b} , compute $\int_{\Gamma} \mathbf{e} \wedge \mathbf{h}$
 $\int_{\Gamma} \mathbf{e} \wedge \mathbf{h} = \frac{1}{6} [\mathbf{e}_1 \mathbf{h}_2 + \mathbf{e}_2 \mathbf{h}_3 + \mathbf{e}_3 \mathbf{h}_2$
 $3 \quad \cdots \quad -\mathbf{h}_1 \mathbf{e}_2 - \mathbf{h}_2 \mathbf{e}_3 - \mathbf{h}_3 \mathbf{e}_1]$
 $\mathbf{h} + 3\mathbf{h}'$
 $\mathbf{h} + 3\mathbf{h} + 3\mathbf{h} + 3\mathbf{h}'$
 $\mathbf{h} + 3\mathbf{h} + 3\mathbf{h}$

Flux of Poynting "vector"

Actually,
$$\int_{\Sigma} \mathbf{e} \wedge \mathbf{h}$$
, with Σ a dual 2-chain
Knowing DoF-arrays \mathbf{e} , \mathbf{b} , compute $\int_{\Gamma} \mathbf{e} \wedge \mathbf{h}$
 $\int_{\Gamma} \mathbf{e} \wedge \mathbf{h} = \frac{1}{6} [\mathbf{e}_1 \mathbf{h}_2 + \mathbf{e}_2 \mathbf{h}_3 + \mathbf{e}_3 \mathbf{h}_2$
 $f_1 = \mathbf{h} + \mathbf{h} +$

Flux of Poynting "vector"

Actually,
$$\int_{\Sigma} \mathbf{e} \wedge \mathbf{h}$$
, with Σ a dual 2-chain
Knowing DoF-arrays \mathbf{e} , \mathbf{b} , compute $\int_{\Gamma} \mathbf{e} \wedge \mathbf{h}$
 $\int_{\Gamma} \mathbf{e} \wedge \mathbf{h} = \frac{1}{6} [\mathbf{e}_1 \mathbf{h}_2 + \mathbf{e}_2 \mathbf{h}_3 + \mathbf{e}_3 \mathbf{h}_2$
 $3 \quad \cdots \quad -\mathbf{h}_1 \mathbf{e}_2 - \mathbf{h}_2 \mathbf{e}_3 - \mathbf{h}_3 \mathbf{e}_1]$
 $\mathbf{h} + 3\mathbf{h}'$
 $\mathbf{h} + 3\mathbf{h} + 3\mathbf{h} + 3\mathbf{h}'$
 $\mathbf{h} + 3\mathbf{h} + 3\mathbf{h}$

The Lorentz force

v × B proxy for
$$-i_v b$$

(vector fields) (1-cochain)

$$\int_{e} i_{v} \mathbf{b} \sim \int_{ext(e, v)} \mathbf{b}$$

Extrusion of an edge, as a chain of facets?

I(e, e', f) = weight of facet f in
extrusion of edge e by the field
$$\lambda^n e'$$

 $v \approx \sum_n \lambda^n(x) v_n = \sum_{n, e'} \lambda^n(x) v_n^{e'} e'$
 $b = \sum_f \mathbf{b}_f w^f$
 $(i_v b)_e = \sum_{e', f} I(e, e', f) \mathbf{b}_f v_n^{e'}$

The Laplace force

 $J \times B$ proxy for $v \rightarrow i_v b \wedge j$

(vector field) (covector-valued twisted 3-form)

To be integrated over dual 3-cell \tilde{n} : Similar to $\int e \wedge h$, but now $1 \wedge \tilde{2}$ instead of $1 \wedge \tilde{1}$

Then, covector $v \rightarrow \int_{\widetilde{n}} i_v b \wedge j$ is force exerted on \widetilde{n} Electric energy, $\int_{\widetilde{n}} e \wedge d$, treated like $\int_{\widetilde{n}} i_v b \wedge j$

Energy

 $\sum_{e \in \mathcal{E}} e_e d_e$

 $\sum_{f \in \mathcal{F}} h_f b_f$

(electric)

(magnetic)

The Maxwell "tensor"

Start from wedge multiply by

 $-\partial_t \mathbf{d} + \mathbf{dh} = \mathbf{j} \qquad \wedge \mathbf{i}_v \mathbf{b}$ $\partial_t \mathbf{b} + \mathbf{de} = \mathbf{0} \qquad \wedge \mathbf{i}_v \mathbf{d}$

add, integrate over D, use q = dd,

set $\mathbf{f} = \mathbf{i}_{v}\mathbf{q} \wedge \mathbf{e} + \mathbf{i}_{v}\mathbf{b} \wedge \mathbf{j}$ (force *density*, covector-valued twisted 3-form) find eventually that $\int_{D} \mathbf{f}$ is equal to

 $\partial_{t} \left[\int_{D} i_{v} d \wedge b \right] + \int_{S} \left[i_{v} h \wedge b + i_{v} e \wedge d - \frac{1}{2} i_{v} (h \wedge b + e \wedge d) \right]$ momentum Maxwell (covector-valued, twisted) 2-form

The Maxwell "tensor"

$$\int_{D} \mathbf{f} = D$$

$$\partial_{t} [\int_{D} \mathbf{i}_{v} \mathbf{d} \wedge \mathbf{b}] + \int_{S} [\mathbf{i}_{v} \mathbf{h} \wedge \mathbf{b} + \mathbf{i}_{v} \mathbf{e} \wedge \mathbf{d} - \frac{1}{2} \mathbf{i}_{v} (\mathbf{h} \wedge \mathbf{b} + \mathbf{e} \wedge \mathbf{d})]$$
momentum
$$\int_{S} [\mathbf{i}_{v} \mathbf{h} \wedge \mathbf{b} - \frac{1}{2} \mathbf{i}_{v} (\mathbf{h} \wedge \mathbf{b})] = \int_{S} [\mathbf{i}_{v} \mathbf{b} \wedge \mathbf{h} + \frac{1}{2} \mathbf{i}_{v} (\mathbf{h} \wedge \mathbf{b})]$$

$$treat \ like \ \mathbf{e} \wedge \mathbf{h}$$

$$extrude \ dual \ faces \ by \ v, \ use \ result \ about \ \mathbf{h} \wedge \mathbf{b}$$

Conclusion

- Object-oriented programming agenda
- Specific difficulty: infinite dimensional entities (fields) vs finite data structures
- Candidates to "object" status (mesh-related things) have been identified,
- and procedures that apply to them, described
- Discrete avatars of *geometrical* objects, for which traditional vector fields are only *proxies*