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The worﬁsﬁoy fumiture

O Affine 3D space, with associated vector space,
but no orientation, no metric structure (for a while)

O Points, vectors, multivectors  (Grassmann algebra)
//2>

O Smooth sub-manifolds, with own orientation:
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The worﬁsﬁoy fumiture

O Affine 3D space, with associated vector space,
but no orientation, no metric structure (for a while)

O Points, vectors, multivectors  (Grassmann algebra)

O Smooth sub-manifolds, W}i/hgg)rientation:

Inner or outer
= &




The concept @C chain:

1-chains: ?2-chains: .
Embed set Same with
of curves in surfaces
vector space i ) etc.:

of singular D 3 /C_ |
1-chains p-chains

_ 2 — _
c=r' ¢, +r2c,+r°C, e.g., S=5, -5,

C
Boundary operator o: @)03 S = C,—C,+C;
C
2

(Linear map: 9(S; —S;) = 9S; — 95, )

What about dual oﬁjects (linear ﬁmctionafs), called cochains?



Chains model probes. Cochains model fields.

PR

Voltmeter: H) emf. V=[e ©
(P =1) ¢

Fluxmeter- Electric field seen as map

o ¢ — <emf along c>,
(p=2) map here denoted e,
a 1-cochain.
Antennas:

Magnetic induction as map

% @ b, the 2-cochain
S — <flux embraced by S>.
etc.

Small probe <—> p-vector Local field <—> p-covector



Faraday's law, now straightforward:

fase/ S (Y fsvb

volts 03 webers

(ciit fS b + fa Se =0
2-cochain _J L I-cochain

or d,b+de=0, if d defined by fs de=J e

| |
Ampere? almost the hence "twisted"

[N
same, but not quite: Q | )‘ cochains d , j, and h:
outer oriented surface 2, BN _9,d+dh=j




(Ampere) —6‘tfzd+fazh:f2j V@

Apart from constitutive laws, yet to come, all equations
relate non-metric objects— cochains

Jo 4218 @ O lod+ =0

(Defining charge q) (Charge conservation)



(Ampeére) —at£d+£zh=£j V@

b = uh d=c¢e

(Faraday) atj;b+j(;se=0 V@

Jo 420 @ Ok, a+ ] 1 =0



Further structuration of space: the Hodge map

p-VECTOR —s (n—p)-VECTOR

twisted or straight straight or twisted
Equip space Only requirement,
with such a map, "non-degeneracy".
v. (Another one, (Volume v A vv,
denoted ¢, will built on v and its
be needed.) » image, must be = 0.)
/ —>

Determines a metric ("v-adapted")

(Select reference 3-vector A and real A. Then A°v A vv = Ivi %\A,
hence a norm, scaling as A. Adjust A for A-volume of A to be A?)



By duality, yields Hodge map on covectors:

p-VECTOR ~s(n —p)-VECTOR

(p=1here)
/- T
2-covector I-covector
(Vv ; b) =(v ;vb)
2-vector I-vector

p-COVECTOR < (n — p)-COVECTOR

| |
Hence relation h =vb (and also d = ee) between cochains, 1.e., fields




So space geo-metry (in the strong sense of
assigning meftric properties —distances, areas,
angles, etc.—to the space we inhabit) amounts

to specitying constitutive laws 1n electrodynamics

O Should not sound strange: Don't we use
light rays to measure the Earth?

O Why two metrics (v =u! and €)? Because
3D shadows of Minkowski's 4D metric

O e=¢, and u=u, when we wish to ignore
details of microscopic interactions and
geometrize them wholesale



Maxwell, in terms of cochains:

_8t£d+£2 h=£j V@ —0d+dh=]

d=c¢ce
d=¢ce¢ h=vb
h=vDb

d )b+ e=0 V@ db+de=0

Discretization strategy: Instead of all S, 2, enforce this
for finite family of surfaces spanned by faces of a mesh

But Hodge requires 1-1 pairing of edges and faces, so...



Select centers inside
primal sitmplexes. Join
them to make dual.




To each cell its own orientation,

inner gcm, m) or outer gcor m)

f




®

Y

G, =1

c

+
i Rfe=_1

k C DVf=1

DR =0, RG=0
(in analogy with grad, rot, div)

. . t .t .t
Incidence matrices for dual are transposes D, R, G



Discretization: General Principles

Replace generic surfaces S, 2,
as well as abstractions of voltmeter, fluxmeter, etc.,

by cell-chains (1.e., based on mesh cells)

O Primal cells when emf's, or magnetic "fluxes" are
concerned (integrals of fields e, a, b, ...)

O Dual cells when genuine, substantial, tluxes are

concerned (energy, charge, momentum...)
(integrals of fields h, d, j, ..., and more involved things like
—to appear later— e Ah, 1 bAaj,1 bah, 1 dae,..)

Replace fields by cell-cochains

thus, field modelled by "DoF array" of scalar values,
one per cell of right kind



N——>F—— F——

grad
b at faces h at dual eo[ges
. (ie., faces)
e a d, )
at eo[ges at dual faces
b={b, :fE F} v—»  h={h;:fEF}

e=1e.:eE€ T} € > d={d.:eE€ L}



Enforce Faraday's law, 9 [ D+ ) €=0

not for all surfaces S, but for all those made of primal
faces. This requires (when S =1, a primal face),

db. +e —e,—e;=0
1.e.,
d.b+ Re=0
t Which leaves
Same thing on dual network: € and w
t . to be built
-dd+Rh=}

Note automaticity of process: Equations forced on us by implementation decisions taken so far.




Metric structure: to any
twisted vector v,
associate a bivector vv.

But according to
"general principles”,
only available twisted

C—
N2
vectors, 1n discrete _

framework, are the f's; -

and only bivectors, _ ft
the f's. Therefore, define: Vi = E f & T'V r

tf

By duality, the v~ make the needed matrix v

Compatibility with earlier map v (given reluctivity "tensor")
provides convergence criterion for numerical analysis.



‘.If dual mesh Barycentric, use

the "Galerkin ’J—[oc[ge", c[eﬁnec[ as
vi=[vw -w
eee'zfg We . We'

where w” is Whitney form of simplex s



f.lf mutual ortﬁogona[ity (f Jmfima[

01116[ cfua[ mesﬁes can 66 acﬁievec[,

ie, v diagonal



Then, automatic .fpatiaf discretization

of Maxwell's ecluationsz

d,b +Re=0 —atd+Rth=j
h=vDb d=¢e

hence (using leap-frog) a Yee-like scheme:

_1
+ V =
B2 p k- 1/2+Rek=() ( 1 )
Ot
kel K

_ kK+1/2 o K+ 1/2
- T +R'vb =j




Wﬁimey forms

Once obtained the cochains b, e (or a), h, d,
what about the fields themselves?

or else:

Are there objects that would be to
differential forms what finite elements are
to functions, 1.e., to O-forms?

e f
- EeEfae W EfEQ-“ f

(Vector potential.)




Wﬁimey forms

k
2 3
1
n ‘ _ n ///// \
{I, m, n} {k, I, m, n}
W

A dNT— AL "

2L h dNA AN+ o+ ]
6 dA A dh A dN"



The tools 1n the box:

Surfaces, curves, etc. > Cell chains

Fields b, h, ... » Cell cochains (DoF arrays) b, h, ...

Constitutive laws  »"Discrete hodges", €, v, O ...
G, R, D (primal side),

grad, rot, div > D, Rt —Gt (dual side)
products, ExH, J-E  » "wedge" product, eAh, jAe
—9D+rotH=1J, D =¢E —9d+Rh=j, d=ce
oB+rotE=0, H=vB 8b+Re 0, h=vb
divD=Q, divB=0 -~ —Gd q, Db=0

E =—grad ¢ — 0;A d=-Gop-oJa



Good, but not enough:

What about "force related" entities, like
E x H (Poynting) ?

Q(E + v xB) (Lorentz) ?

J x B (Laplace) ?

B ®H (Maxwell) ?

l |

Heuristic hint: force is a covector, cf. v — (v ; f)

O O O O




Flux of Poynting "vector"

Actually, fZ e A h, with X a dual 2-chain

Knowing DoF-arrays e, b, compute fxe A h

A
VAR
/ \
/ \
/ N\
/
/

/ N\
\\\\ e 4

<

_1
J enh=2leh,+eh +eh, o\
3 ‘\\\ \\

3 —he.—-he —he] NN
R b s e Bt 2 : h'
@ 1 2 // \\\ \\\
> 6 e

e1+ 62+ e3+\e4

h+h'

3




Flux of Poynting "vector"

Actually, fZ e A h, with X a dual 2-chain

Knowing DoF-arrays e, b, compute [ e A h

A
VAN
/ N\
/ \
/ \
/ \

VAN
h iff-a[eﬁneqﬂ

tﬁere

1
ft e nh=z[eh,+eh, +eh,

/3/\ ~he ~he —he
2

1

L

e1+ 62+ e3+\e4




Flux of Poynting "vector"

Actually, fZ e A h, with X a dual 2-chain

Knowing DoF-arrays e, b, compute fxe A h
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‘Extrusion (ﬁy the ffow of a vector ﬁe[&[ V):

® of apoint: wt(x)

ext(x, v, t)
d.u (x) = v(u,(x))

U0 = x ¥
® of a p-manifold: C o
g = e
Inner product: ext(c, v, t)

[ib=lim 1

C t—0 tYext(c,v,1t)



The Lorentz force

vxB proxy for  —1b

(vector fields) (1-cochain)
fe 1Vb = fext(e, V)b

Extrusion of an edge, as a chain of facets?



ext(e, u) = kk(yn) nmk + 7»1 (y,) nml



I(e, €', f) = weight of facet { 1n
extrusion of edge e by the field \' ¢

!

c
N

V~E N(X)V, —E 7x(X)V e’
b = Ebw
(1 b)ez Ee',f1(6’ e',f)bfV§



The Laplace force

JxB proxytfor v—=1,baj
(vector field)  (covector-valued twisted /,§—f0rm)

To be integrated over dual 3-cell n:

Similar to [e A h, but now

1 A2 insteadof 14 1 n

Then, covector v — J_ 1.b A ] is force exerted on n
n

Electric energy, [ ~e A d, treated like fﬁ ibAaj



EeEf e d 2fECF hy by

(electric) (magnetic)



The Maxwell "tensor"

Start from wedge multiply by

—d,d + dh =} A, b
ob+de=0 AL, d D
S

add, integrate over D, use q=dd,

set f=1gAe+1baj (force dens?'ly, covector-
valued twisted 3-form)

find eventually that fo is equal to
oL idabl +[[ihab+iead—i(hab+end)

momentum Maxwell (covector-valued, twisted) 2-form



The Maxwell "tensor"

D
fo - QS

at[{)ivd/\b] +fs[th/\b+ive/\d—%iv(h/\b+e/\d)]

momentum Maxwell (covector-valued, twisted) 2-form

f[1h/\b——1(h/\b)] f[1b/\h+ > i(hAb)]
treat [ike e/\hj 7

extrude dual faces By v, use result about hab



Conclusion

O O

Object-oriented programming agenda

Specific difficulty: infinite dimensional entities
(fields) vs finite data structures

Candidates to "object" status (mesh-related
things) have been identified,

and procedures that apply to them, described

Discrete avatars of geometrical objects, for
which traditional vector fields are only proxies



