High-Performance Self-Consistent Electromagnetic Modeling of Beams

John R. Cary University of Colorado and Tech-X Corporation Presented at 2006 International Computational Accelerator Physics Workshop

thanks to the

VORPAL team: George Bell, David Bruhwiler, Richard Busby, Johan Carlsson, John R. Cary, Dimitre Dimitrov, Ammar Hakim, Peter Messmer, Chet Nieter, Nate Sizemore, David Smithe, Peter Stoltz, Raoul Trines, Seth Veitzer, Wen-Lan Wang, Greg Werner, Nong Xiang, and partners:

DOE HEP, FES, NP, SciDAC (P. Spentzouris, R. Ryne, W. Mori, K.Ko), SBIR; NSF; AFOSR, JTO SBIR

New era of computational beam modeling

- Traditional accelerator physics modeling
 - -Strong inhomogeneity (strong focusing, cavities, multipactoring)
 - -Approximate approaches to self consistency (none, beam-frame electrostatics, beam-beam kicks)
- Traditional plasma modeling
 - -Strong self-fields (LWFA, PWFA)
 - -Boundaries distant
- New modeling developments combine these capabilities to bring self-consistent modeling of beams in the presence of complex structures.

Parallel computation is making more detailed computations possible

Basic problem is charged particles moving self-consistently in EM fields **Auxiliary equations** Maxwell $\frac{\partial \mathbf{B}}{\partial \mathbf{B}} = -\nabla \times \mathbf{E}$ $\nabla \bullet \mathbf{B} = 0$ ∂t $\frac{\partial \mathbf{E}}{\partial t} = c^2 \left[\nabla \times \mathbf{B} - \mu_0 \mathbf{j} \right]$ $\nabla \bullet \mathbf{E} = \rho / \varepsilon_0$ Particles drive EM $\rho = \sum q_i \delta(\mathbf{x} - \mathbf{x}_i)$ $\mathbf{j} = \sum q_i \mathbf{v}_i \delta(\mathbf{x} - \mathbf{x}_i)$ Particle dynamics from EM $\frac{d(\gamma \mathbf{v})}{dt} = \frac{q_i}{m_i} \left[\mathbf{E}(\mathbf{x}_i, t) + \mathbf{v}_i \times \mathbf{B}(\mathbf{x}_i, t) \right] \qquad \frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i$ plus other physics (later)

Domain decomposition

Each processor computes fields in one spatial domain Fastest are LOCAL algorithms, where only boundary information is communicated

- Communication is expensive
- Global communication is really expensive (Poisson solves, global matrix inversion, ...)

Overlap of communication and computation needed for speed

- Non overlap algorithms:
 - Compute domain
 - Send skin (outer edge)
 - Receive guard
 - Repeat
- Overlap algorithms:
 - Compute skin
 - Send skin
 - Compute body
 - Receive guard
 - Repeat

Overlap algorithms increase complexity (threading, asynchronicity, without memory walls, ...) <u>but increase speed</u> (no loss down to some domain size)

Finite-difference time-domain, particle-incell works well for parallel computing

- Simple, second-order accuracy sufficient for beam computations
- Higher-order available when needed
- Naturally includes particles
 - Phase space dynamics
 - Mixing
- LOCAL

Second-order in time by leap frog

- Time centered differences give second order accuracy in Δt
- Can get time-collocated values by half-stepping in B
- Similar for E update, except c² factor
- LOCAL

Computing particle-particle interactions is prohibitive

Coulomb interaction leads to N_p² force computations

$$\frac{d\gamma_i \mathbf{v}_i}{dt} = \frac{q_i}{\varepsilon_0 m_i} \sum_j q_j \frac{\mathbf{x}_i - \mathbf{x}_j}{\left|\mathbf{x}_i - \mathbf{x}_j\right|^3}$$

Lenard-Weichert (retarded potentials) - worse due to need to keep history

$$\frac{d\gamma_i \mathbf{v}_i}{dt} = \frac{q_i}{\varepsilon_0 m_i} \sum_j q_j \mathbf{F}_{ij}(\mathbf{x}_i, \mathbf{x}_j(t-\tau))$$

Particle In Cell (PIC) reduces to N_p scaling

- Particle contributions to charges and currents are added to each cell: $O(N_p)$ operations
- Forces on a particle are found from interpolation of the cell values: $O(N_p)$ operations

Finding the force: interpolation (gather)

- Linear weighting for each dimension
 - 1D: linear
 - -2D: bilinear = area weighting
 - 3D: trilinear = volume weighting
- Force obtained through 1st order, error is 2nd order
- For simplicity, no loss of accuracy, weight first to nodal points
- LOCAL

- Break EM update into two parts
- Do current-free part prior to reception of particle currents
- Do remainder after

Local update algorithms scale very well to large numbers of processors

VORPAL scaling on Seaborg (IBM SP3)

- Strong scaling, 10,000x400 continually subdivided
- Similar behavior on 1,500x300x300
 - (135M cells, 0.5 B particles)
- Resolution of sub-micron (laser)
- Propagation to 1 mm (20,000 steps) in 30-40 hours with 2000 POWER III or 400 POWER V.
- Parallelism depends on surface to volume ratio
- All computations for recent LWFA were of this type
- 2×10¹³ particle-time-steps or 10¹⁴ cell-time-steps (no particles) routine

How can we apply <u>massive</u> computation to complex shapes?

- Local algorithms (no Poisson solves, no global matrix inversions)
- Accurate for complex shapes

Early, stair-step boundary conditions gave unacceptable computational errors

- N (L/ Δx) cells in each direction
- Error of $(\Delta x/L)^3$ at each surface cell
- O(N²) cells on surface
- Error = $N^2 (\Delta x/L)^3 = O(1/N)$

Convergence studies confirm result, indicate modeling problem

This approach will not give answer even on large, parallel hardware

Resurgence of regular grids: cut cells at surface retain accuracy of volume

- For cells fully interior, use regular update
- For boundary cells:
 - Store areas and lengths
 - Update fluxes via

 $B_z = \Phi_{xy} / A_{xy}$

- Update fields via

$$\dot{\Phi}_{xy} = -E_x \ell_x - E_y \ell_y$$

- Dey-Mittra
- Gustafson

Dey-Mittra has some reduction of stable time step

- Spatial discretization takes
 continuum equations to
 coupled linear ODEs. One
 vector component for each cell
 face.
- Temporal discretization (leap frog) - time step limited by maximum eigenvalue
- Gershgoren theorem estimates maximum eigenvalue
- Ignore cells that are too small Guaranteed stability

$$-\frac{\partial^2 B}{\partial t^2} = c^2 \nabla \times \nabla \times B$$

$$-\frac{\partial^2 V}{\partial t^2} = M \bullet V$$

 $\max \, eigenvalue(M) \Delta t^2 < 4$

$$\lambda < \max_{i} \sum_{j} |M_{i,j}|$$
$$\Delta t = f_{DM} \Delta t_{CFL}$$

$$keep \sum_{j} \left| M_{i,j} \right| f_{DM}^2 \Delta t_{CFL}^2 < 1$$

Cut-cell boundary conditions accurately represent geometry

- Properly distanced from the cavity ———
- Properly oriented around axis
- Ellipsoidal cavity —
- Conical sec. revolution
- Ellipse sec. rev.
- Mod end caps

Rapid meshing

- Parallelizes well, since only boundary cells computed
- < 2 m on 16 proc

Dey-Mittra (1997) cut-cells provide 10⁻⁵ accuracy

- Fewer than 10⁷ cells for cavity modeling at one part in 10⁵
- Implementation exists now in VORPAL
- No significant additional ^{1.00E-04} computational cost 1.00E-05

Richardson extrapolation does even better, 10⁻⁵ accuracy with 60 cells across (for self-similar meshes)

Obtain all modes through broad band excitation of end cell

Wide-band TE excitation of end cavity leads to all modes being generated.

FFT after 500 nanoseconds shows TE mode spectrum

Accurate modes obtained by fitting

Obtain precise single mode through narrow band excitation

• no HOM centerJy • 100,000 steps, 520 periods 5×10⁵ • Stable & Pure -5×10⁵ 1×10⁻⁷ 2×10⁻⁷ 3×10⁻⁷ 0 centerBx 0.5 E 0.0 -0.5 E 1×10⁻⁷ 2×10-7 3×10⁻⁷ 0 YeeElecField centerEx فألواء حينا والرابا باريني فالقطيا وتقرقيا وتريسان -0.6-0.4-0.2 0.0 0.2 0.4 0.6 1×10⁻⁷ 3×10⁻⁷ 2×10⁻⁷ 0 TM TE

Growth of real-symmetry-excluded mode at numerical limit. Diffusive, not unstable.

Outgoing wave BC, power from measuring Poynting flux

- Measure:
 - P = Poynting flux

exiting coax

- U = Stored Energy
- Calculate: $Q = \omega U/P$

Mur and PML both present

Wakefields obtained without summing modes

Wakefield for Tesla cavities computed by VORPAL in 3D

Self-consistent EM gun simulations in complex cavities now possible

- Image charges during beam emission
- Wakes from constrictions
- Wake fields influencing final emittance

Next challenges - including capacitive gaps

- HOM capacitive coupler gap is significantly smaller than grid necessary to resolve other features (gap is exaggerated in this figure).
- Full sim is 1283.4 x 222 x 222 $mm^3 = 63.25 \times 10^6 mm^3$
- Resolving 0.35 mm gap to 0.1 mm requires 6.3x10¹⁰ cells
- Possible to "brute-force" but algorithm development will allow use of computing power elsewhere

SciDAC will allow us to provide advanced capability for this problem

- FDTD methods permit stable computations for millions of time steps, thus permitting direct study of multi-bunch dynamics
- New implicit solver (sparse matrix inversion in one step) will allow large time steps with fine resolution
- Capacitive gap model will allow large simulations with less resolution per cavity
- Parametric representation of geometry make addition of errors easy

New studies inspire capability, requests

- Laser-plasma: self-consistency, parallelism
 - Higher-order particle shapes
 - Reduced models
- Accelerating cavities: shape modeling
 - Higher-order field to particle near walls
 - Resistive walls for complex shapes
 - Implicit EM solvers, variable grids
- Electron guns, cavities, high-gradient
 - Better emission models, esp. for conformal boundaries
 - Multipactoring
 - Heat deposition computations
 - Microphonics!
- Dielectric systems
 - Complex photonic band-gap systems
- Beam quality
 - Collisions
- Crab cavities
 - Notch filters, LOM couplers
 - Variable grids
- Error analysis (python scripting capability)

ILC end-to-end presents incredible challenges

- Transverse ratio = $10 \text{ cm}/10 \text{ nm} = 10^7$
 - Longitudinal ratio = $20 \text{ km long}/1 \text{ mm} = 2 \times 10^7$
 - Courant limit would give $T/\Delta t = 2 \times 10^{11}$
 - Multiply by number (1000) of bunches by 300
 - Composite of 2.4×10³⁸ cell-time-steps (10¹⁴ is routine)
 - Need to overcome disparity of 3×10²⁴

But there is a plan

- Implicit solvers increase Δt by 10^6
- Reduced model buys 300
- Variable grid gives 10^8
- Moving window gives another factor of 2×10⁴
- Savings of 6x10²⁰

Possible with combined improvements in *Hardware*, *Algorithms*, *Addition of models*

Summary

- Self-consistent EM modeling has progressed
 - High-performance, self-consistent computations
 - Accurate treatment of boundaries
 - Secondary emission
 - Absolutely stable charge-conserving algorithm
- Remain algorithm needs
 - Conformal resistive walls
- Remain implementation needs
 - Surface resistance
 - Dark currents
 - Photonic emission
 - Absolutely stable charge-conserving algorithm