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1%4 New era of computational beam modeling

| e Traditional accelerator physics modeling

—Strong inhomogeneity (strong focusing, cavities,
multipactoring)

—Approximate approaches to self consistency (none,
beam-frame electrostatics, beam-beam kicks)

(I Traditional plasma modeling
—Strong self-fields (LWFA, PWFA)
—Boundaries distant

* New modeling developments combine these
capabilities to bring self-consistent modeling of beams
In the presence of complex structures.

Parallel computation Is making more detailed
computations possible




Progression of modeling

Test particles in structures
(tracking, multipactoring)

l Advances in hardware

Wake fields in structures l

l Parallel computations

Beam-frame electrostatics
(no structures)

Accurate parallel
algorithms

Self-consistent,
fully EM in structures




f Basic problem is charged particles

moving self-consistently in EM fields
Maxwell Auxiliary equations
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"« Particles drive EM

J= E%‘Vié(x -X;)

 Particle dynamics from EM
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L Adv) _ g [E(x;,0)+v; x B(x;,1)]

; plus other physics (later)



%/‘ Parallelism: divide computational

responsibilities
/ Domain 3
Domain 1 4—/
\ . ................
*E o
........ "—;_/ Domain 4

Domain decomposition
Each processor computes fields in one spatial domain
Fastest are LOCAL algorithms, where only boundary
Information Is communicated

e Communication Is expensive

* Global communication is really expensive
(Poisson solves, global matrix inversion, ...)




Overlap of communication and
computation needed for speed

“n

* Non overlap algorithms:
— Compute domain
— Send skin (outer edge)
— Receive guard
— Repeat
 Overlap algorithms:
— Compute skin
— Send skin
— Compute body

Body Skin  Guard

~ Receive guard. 5y erlap algorithms increase complexity
— Repeat (threading, asynchronicity, without
memory walls, ...)
but increase speed
(no loss down to some domain size)




Finite-difference time-domain, particle-in-
cell works well for parallel computing

o Simple, second-order accuracy sufficient for beam
computations

» Higher-order available when needed
 Naturally includes particles

— Phase space dynamics

— Mixing
« LOCAL



C{ Yee: 2nd order accurate spatial
(FEGE . L
F% differentiation
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Second-order in time by leap frog
E— e,
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Time centered differences give second order accuracy in At
Can get time-collocated values by half-stepping in B
, Similar for E update, except c? factor

LOCAL




ﬂﬁ;{ Computing particle-particle interactions is
prohibitive

e Coulomb interaction leads to sz force
computations

dyl _ 4
£, EqJ

X; - J\
o Lenard-Weichert (retarded potentials) - worse due
to need to keep history

dyivi _ g
pra Eq] F,(x;X ;(t - T))




T

Particle In Cell (PIC) reduces to N, scaling

s Particle contributions to
charges and currents are

added to each cell: O(N)
operations

« Forces on a particle are

found from interpolation of X o:. A :: °
the cell values: O(N,) Sele o0l |
°¢ ole |0 Lo

operations




‘i% Finding the force: interpolation (gather)
e Linear weighting for each

dimension
— 1D: linear O
— 2D: bilinear = area weighting

— 3D: trilinear = volume weighting

 Force obtained through 1st
order, error 1s 2nd order

 For simplicity, no loss of

accuracy, weight first to nodal
points

| OCAL

E EX node EX,yee

X,yee




Important to overlap communication and
computation

update particles
FRstiss & deposit currents

.......

finish EM update

receive particles

~ send particles receive currents
& currents |

update fluids start EM update

* Break EM update into two parts
K Do current-free part prior to reception of particle currents

|« Do remainder after
i ‘




Local update algorithms scale very well

to large numbers of processors
o4

VORPAL scaling on s(N)

Seaborg (IBM SP3)

177
# processors 10

Strong scaling, 10,000x400 continually subdivided
Similar behavior on 1,500x300x300
— (135M cells, 0.5 B particles) nawure
Resolution of sub-micron (laser) 3 -
R

Propagation to 1 mm (20,000 steps) in 30-40 hours with
2000 POWER 111 or 400 POWER V.

Parallelism depends on surface to volume ratio
All computations for recent LWFA were of this type

2x10% particle-time-steps or 104 cell-time-steps (no
particles) routine




Boundaries lead to increasingly complex
modeling




How can we apply massive computation
to complex shapes?

L_ocal algorithms (no Poisson solves, no global
matrix inversions)

Accurate for complex shapes



arly, stair-step boundary conditions gave
unacceptable computational errors

......

120x24x24 = 71,424 cells
= 215,000 degrees of freedom

e N (L/AX) cells in each direction
e Error of (Ax/L)? at each surface cell

e O(N?) cells on surface
e Error = N2(Ax/L)? = O(1/N)




V4 Convergence studies confirm result,
A2

Indicate modeling problem

Error in frequency for sphere = Stair-step

Stair-step error is 104 toeor
at 5000 cells per 10002 | T
dimension, error linear ¢ 1o

with cell size —_ I

1011 cells for 3D 1. 00E-05

1.00E+01 1.00E+02 1.00E+03 1.00E+04
problem .

Error

This approach will not give answer even on large,
parallel hardware



% Resurgence of regular grids: cut cells at
| surface retain accuracy of volume

| For cells fully interior, use

regular update
e For boundary cells: o
Xy
— Store areas and lengths TE

— Update fluxes via .

B, =<I)xy/Axy E

— Update fields via

O, =-El,-E,/l,
o Dey-Mittra /

e Gustafson




Dhe

Dey-Mittra has some reduction of stable
time step

o Spatial discretization takes

continuum equations to _Q 2V Vx B

coupled linear ODEs. One o2

vector component for each cell ,

face. _g MoV
 Temporal discretization (leap ot

frog) - time step limited by
maximum eigenvalue

max eigenvalue(M )At2 <4

* Gershgoren theorem estimates A < max; E\Ml ]\
maximum eigenvalue J
o Ignore cells that are too small AL = fpmAIcFL

Guaranteed stability keep Y M, i|fpyAtery <1
J



-\ _.'Cut-cell boundary conditions accurately
represent geometry

 Properly oriented around axis

ﬁ- Ellipsoidal cavity — —
 Conical sec. revolution\
* Ellipse sec. rev.
* Mod end caps

—_ 312x56x56 cells

Rapid meshing
« Parallelizes well, since only boundary cells computed
e <2mon 16 proc




W Dey-Mittra (1997) cut-cells provide 10

.......

.....

| accuracy
il Fewer than 107 cells for Error in frequency for sphere  * Stair-step
| cavity modeling at one 1o , * Dey-Mittra
part in 10° LOOE_OZ'_ .
* Implementation exists . | Y = 0.1781x°%"
now in VORPAL 5 HOEBIN
 No significant additional "% | e
computational cost p—_— S
1.00E+01 1.00E+}2\N 1.00E+03 1.00E+04

Richardson extrapolation does even better,
10> accuracy with 60 cells across
(for self-similar meshes)
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Obtain all modes through broad band
excitation of end cell

Wide-band TE excitation of end cavity leads to all modes being generated.
1x105F
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Compares well with measurements
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*no HOM
-+ 100,000 steps, 520 periods
|+ Stable & Pure

A

YeeEIecFleld
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™

centerdy

0 1x1077 2x1077 Ix1077

centerBx
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centerkx
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TE

Growth of real-symmetry-excluded mode at numerical
limit. Diffusive, not unstable.



Outgoing wave BC, power from
measuring Poynting flux

Measure:
— P = Poynting flux ’

exiting coax
— U = Stored Energy —
Calculate: Q = wU/P

E U = Stored Ene, i
1.0x10" e E

5.0x10"E 3

0 5.0x107% 1.0x107° 1.5x107° 2.0x107®

__ Mur and PML
P = Poynting Out Coax _ bOth present

0 5.0x107% 1.0x107% 1.5x107% 2.0x1078




1%;{ Wakefields obtained without summing modes

Wakefield for Tesla cavities computed by VORPAL in 3D



% Self-consistent EM gun simulations in
. B . .
. complex cavities now possible

 Image charges
during beam
emission

e Wakes from
constrictions

» Wake fields
Influencing final
emittance



¥-{s Next challenges - including capacitive gaps

a

cap. gap |

HOM capacitive coupler gap is significantly smaller than grid
necessary to resolve other features (gap is exaggerated in this figure).

o Full simis 1283.4 x 222 x 222 mm?® = 63.25x10° mm?
« Resolving 0.35 mm gap to 0.1 mm requires 6.3x101° cells

» Possible to “brute-force” but algorithm development will allow use of
computing power elsewhere




T%@‘;{‘SciDAC will allow us to provide advanced
capability for this problem

 FDTD methods permit stable computations for
millions of time steps, thus permitting direct study
of multi-bunch dynamics

* New Implicit solver (sparse matrix inversion in one
step) will allow large time steps with fine
resolution

o Capacitive gap model will allow large simulations
with less resolution per cavity

e Parametric representation of geometry make
addition of errors easy



New studies inspire capability, requests

Laser-plasma: self-consistency, parallelism
— Higher-order particle shapes
— Reduced models
» Accelerating cavities: shape modeling
— Higher-order field to particle near walls
— Resistive walls for complex shapes
— Implicit EM solvers, variable grids
» Electron guns, cavities, high-gradient
— Better emission models, esp. for conformal boundaries
— Multipactoring
— Heat deposition computations
— Microphonics!
* Dielectric systems
— Complex photonic band-gap systems
e Beam quality
— Collisions
» Crab cavities
— Notch filters, LOM couplers
— Variable grids
o Error analysis (python scripting capability)

.
o, -
[ ]




,_1 ILC end-to-end presents incredible challenges
/‘y'h Transverse ratio = 10 cm/10 nm = 107
|« Longitudinal ratio = 20 km long/1 mm = 2x107
e Courant limit would give T/At = 2x1011
o Multiply by number (1000) of bunches by 300

e Composite of 2.4x1038 cell-time-steps (104 is
routine)

| » Need to overcome disparity of 3x102
| But there is a plan
 Implicit solvers increase At by 10°
' » Reduced model buys 300
e Variable grid gives 108
| » Moving window gives another factor of 2x104
e Savings of 6x10%°
Possible with combined improvements In
Hardware, Algorithms, Addition of models




o Summary

« Self-consistent EM modeling has progressed
— High-performance, self-consistent computations
— Accurate treatment of boundaries
— Secondary emission
— Absolutely stable charge-conserving algorithm
e Remain algorithm needs
— Conformal resistive walls
e Remain implementation needs
— Surface resistance
— Dark currents
— Photonic emission
— Absolutely stable charge-conserving algorithm




