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New era of computational beam modeling

• Traditional accelerator physics modeling
–Strong inhomogeneity (strong focusing, cavities,
multipactoring)

–Approximate approaches to self consistency (none,
beam-frame electrostatics, beam-beam kicks)

• Traditional plasma modeling
–Strong self-fields (LWFA, PWFA)
–Boundaries distant

• New modeling developments combine these
capabilities to bring self-consistent modeling of beams
in the presence of  complex structures.

Parallel computation is making more detailed
computations possible



Progression of modeling

Test particles in structures
(tracking, multipactoring)

Beam-frame electrostatics
(no structures)

Wake fields in structures

Self-consistent, 
fully EM in structures

Parallel computations

Accurate parallel
algorithms

Advances in hardware



Basic problem is charged particles
moving self-consistently in EM fields

• Maxwell

• Particles drive EM

• Particle dynamics from EM
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Parallelism: divide computational
responsibilities

Domain 1

Domain 2

Domain 3

Domain 4

• Communication is expensive
• Global communication is really expensive

(Poisson solves, global matrix inversion, …)

Domain decomposition
Each processor computes fields in one spatial domain
Fastest are LOCAL algorithms, where only boundary

information is communicated



Overlap of communication and
computation needed for speed

• Non overlap algorithms:
– Compute domain
– Send skin (outer edge)
– Receive guard
– Repeat

• Overlap algorithms:
– Compute skin
– Send skin
– Compute body
– Receive guard
– Repeat

Skin GuardBody

Overlap algorithms increase complexity
(threading, asynchronicity, without

memory walls, …)
but increase speed

(no loss down to some domain size)



Finite-difference time-domain, particle-in-
cell works well for parallel computing

• Simple, second-order accuracy sufficient for beam
computations

• Higher-order available when needed
• Naturally includes particles

– Phase space dynamics
– Mixing

• LOCAL



Yee: 2nd order accurate spatial
differentiation

• At the midpoint

• Leads to special layout
of values in a cell

• Yee mesh gives 2nd
order accuracy of spatial
derivatives
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Second-order in time by leap frog

• Time centered differences give second order accuracy in Δt
• Can get time-collocated values by half-stepping in B
• Similar for E update, except c2 factor
• LOCAL
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Computing particle-particle interactions is
prohibitive

• Coulomb interaction leads to Np
2 force

computations

• Lenard-Weichert (retarded potentials) - worse due
to need to keep history
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Particle In Cell (PIC) reduces to Np scaling

• Particle contributions to
charges and currents are
added to each cell: O(Np)
operations

• Forces on a particle are
found from interpolation of
the cell values: O(Np)
operations



Finding the force: interpolation (gather)
• Linear weighting for each

dimension
– 1D: linear
– 2D: bilinear = area weighting
– 3D: trilinear = volume weighting

• Force obtained through 1st
order, error is 2nd order

• For simplicity, no loss of
accuracy, weight first to nodal
points

• LOCAL
Ex,yeeEx,yee

Ex,node



Important to overlap communication and
computation

• Break EM update into two parts
• Do current-free part prior to reception of particle currents
• Do remainder after
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Local update algorithms scale very well
to large numbers of processors

VORPAL scaling on
Seaborg (IBM SP3)

• Strong scaling, 10,000x400 continually subdivided
• Similar behavior on 1,500x300x300

– (135M cells, 0.5 B particles)
• Resolution of sub-micron (laser)
• Propagation to 1 mm (20,000 steps) in 30-40 hours with

2000 POWER III or 400 POWER V.
• Parallelism depends on surface to volume ratio
• All computations for recent LWFA were of this type
• 2×1013 particle-time-steps or 1014 cell-time-steps (no

particles) routine



Boundaries lead to increasingly complex
modeling



How can we apply massive computation
to complex shapes?

• Local algorithms (no Poisson solves, no global
matrix inversions)

• Accurate for complex shapes



Early, stair-step boundary conditions gave
unacceptable computational errors

• N (L/Δx) cells in each direction
• Error of (Δx/L)3 at each surface cell
• O(N2) cells on surface
• Error = N2(Δx/L)3 = O(1/N)

120x24x24 = 71,424 cells
= 215,000 degrees of freedom



Convergence studies confirm result,
indicate modeling problem

This approach will not give answer even on large,
parallel hardware

• Stair-step error is 10-4

at 5000 cells per
dimension, error linear
with cell size

• 1011 cells for 3D
problem



Resurgence of regular grids: cut cells at
surface retain accuracy of volume

• For cells fully interior, use
regular update

• For boundary cells:
– Store areas and lengths
– Update fluxes via

– Update fields via

• Dey-Mittra
• Gustafson
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Dey-Mittra has some reduction of stable
time step

• Spatial discretization takes
continuum equations to
coupled linear ODEs.  One
vector component for each cell
face.

• Temporal discretization (leap
frog) - time step limited by
maximum eigenvalue

• Gershgoren theorem estimates
maximum eigenvalue

• Ignore cells that are too small
Guaranteed stability
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Cut-cell boundary conditions accurately
represent geometry

Rapid meshing
• Parallelizes well, since only boundary cells computed
• < 2 m on 16 proc

• Properly distanced from the cavity
• Properly oriented around axis
• Ellipsoidal cavity
• Conical sec. revolution
• Ellipse sec. rev.
• Mod end caps

312x56x56 cells



Dey-Mittra (1997) cut-cells provide 10-5

accuracy

Richardson extrapolation does even better,
10-5 accuracy with 60 cells across

(for self-similar meshes)

• Fewer than 107 cells for
cavity modeling at one
part in 105

• Implementation exists
now in VORPAL

• No significant additional
computational cost



Obtain all modes through broad band
excitation of end cell

• Wide-band TE excitation of end cavity leads to all modes being generated.

• FFT after 500 nanoseconds shows TE mode spectrum

• Accurate modes obtained by fitting



Compares well with measurements



Obtain precise single mode through narrow band
excitation

Growth of real-symmetry-excluded mode at numerical
limit.  Diffusive, not unstable.

TM TE

• no HOM
• 100,000 steps, 520 periods
• Stable & Pure



Outgoing wave BC, power from
measuring Poynting flux

• Measure:
– P = Poynting flux

     exiting coax
– U = Stored Energy

• Calculate:  Q = ωU/P

Mur and PML
both present



Wakefields obtained without summing modes

Wakefield for Tesla cavities computed by VORPAL in 3D



Self-consistent EM gun simulations in
complex cavities now possible

• Image charges
during beam
emission

• Wakes from
constrictions

• Wake fields
influencing final
emittance



Next challenges - including capacitive gaps

• HOM capacitive coupler gap is significantly smaller than grid
necessary to resolve other features (gap is exaggerated in this figure).

• Full sim is 1283.4 x 222 x 222 mm3 = 63.25x106 mm3

• Resolving 0.35 mm gap to 0.1 mm requires 6.3x1010 cells
• Possible to “brute-force” but algorithm development will allow use of

computing power elsewhere

cap. gap



SciDAC will allow us to provide advanced
capability for this problem

• FDTD methods permit stable computations for
millions of time steps, thus permitting direct study
of multi-bunch dynamics

• New implicit solver (sparse matrix inversion in one
step) will allow large time steps with fine
resolution

• Capacitive gap model will allow large simulations
with less resolution per cavity

• Parametric representation of geometry make
addition of errors easy



New studies inspire capability, requests
• Laser-plasma: self-consistency, parallelism

– Higher-order particle shapes
– Reduced models

• Accelerating cavities: shape modeling
– Higher-order field to particle near walls
– Resistive walls for complex shapes
– Implicit EM solvers, variable grids

• Electron guns, cavities, high-gradient
– Better emission models, esp. for conformal boundaries
– Multipactoring
– Heat deposition computations
– Microphonics!

• Dielectric systems
– Complex photonic band-gap systems

• Beam quality
– Collisions

• Crab cavities
– Notch filters, LOM couplers
– Variable grids

• Error analysis (python scripting capability)



ILC end-to-end presents incredible challenges
• Transverse ratio = 10 cm/10 nm = 107

• Longitudinal ratio = 20 km long/1 mm = 2×107

• Courant limit would give T/Δt = 2×1011

• Multiply by number (1000) of bunches by 300
• Composite of 2.4×1038 cell-time-steps (1014 is

routine)
• Need to overcome disparity of 3×1024

But there is a plan
• Implicit solvers increase Δt by 106

• Reduced model buys 300
• Variable grid gives 108

• Moving window gives another factor of 2×104

• Savings of 6x1020

Possible with combined improvements in
Hardware, Algorithms, Addition of models



Summary
• Self-consistent EM modeling has progressed

– High-performance, self-consistent computations
– Accurate treatment of boundaries
– Secondary emission
– Absolutely stable charge-conserving algorithm

• Remain algorithm needs
– Conformal resistive walls

• Remain implementation needs
– Surface resistance
– Dark currents
– Photonic emission
– Absolutely stable charge-conserving algorithm


