Coupled Transient Thermal and Electromagnetic Finite Element Simulation of Quench in Superconducting Coils

G J C Aird, J Simkin, S C Taylor, C W Trowbridge & E Xu Vector Fields Limited, Oxford UK

Application

- A development for use in the design of:
 - Wire and cable wound magnets
 - Filled coil structures (resin, wax, etc.)
 - And possibly helium filled open structures

Introduction

- Superconducting magnets normally operate close to critical current
 - To minimise material costs
 - To minimise manufacturing costs
 - Because it is essential for the application and therefore
- Superconducting magnets Quench
 Even with best design and excellent manufacturing technology

The Quench process

- Probably initiated by a micro movement in the coil
 - A small energy release raises the superconductor above its critical temperature (because at 4.2K specific heats are very small) and it becomes resistive (normal)
- If the superconductor is not cryogenically stable (Copper to Superconductor ratio less than 6:1)
 - Heat from the resistive region conducts through the coil and spreads the quench
 - As the coil currents start to change dB/dt losses in the conductor cause more heating

Quench Tolerant

- Magnets must be designed to survive a quench
 - Basic design parameters
 - Conductor (Cu:Sc ratio, size and current)
 - Subdivide coil (add protection circuits to each)
 - Quench detection
 - Turn off the power supply (if there is one)
 - Protection circuit
 - Linked to heater pads
 - Conducting formers Quench back

Formulation and Implementation

- Transient Thermal $\rho C(T) \frac{dT}{dt} \nabla .\kappa(T) \nabla T = Q$
 - First and second order nodal elements

• Transient EM
$$\nabla \times \frac{1}{\mu} \nabla \times \vec{A} + \sigma \left(\frac{d\vec{A}}{dt} + \nabla V \right) = \vec{J}$$

- First order edge elements
- Thermal and EM (+circuits) are closely *de*coupled
- Galerkin time integration method

Interesting features of the problem (1)

Extreme non-linearity

- Specific Heat & Thermal & Electrical Conductivity
- Newton Raphson Non-linear solutions are implemented BUT NOT recommended

Large time steps and therefore temperature changes make the non-linear equations slow to solve

• Most effective method = all non-linearity handled within the adaptive time integration procedure

Extreme non-linearity

• Adaptive Time integration

Interesting features of the problem (2)

• Representation of the coils in circuit equations

$$\iiint_{\Omega_p} \vec{N}_p \cdot \vec{E}_j \frac{d\vec{A}_j}{dt} d\Omega_p + I_p R = V$$

where
$$\vec{N}_p I_p = \vec{J}$$

And N_p is a discrete turns density vector derived from the current density distribution

• The coils must be meshed in both the thermal and EM models

Interesting features of the problem (3)

- Thermal simulation is 'stiff'
 - Anisotropic Thermal conductivity
 - 5000 along the wire (Cu dominates)
 - 1 normal to the wire (Resin & insulation)
 - A Factor of 5 worse than expected (at 4.2K)
 - Heat conducted by phonons
 - Phonons reflected by material discontinuities
- Use an Anisotropic mesh
 - To reduce stiffness of the system
 - Would be better with Hexahedra!

QUENCH module for OPERA-3d

- Uses finite element methods to simulate the transient thermal & Electromagnetic behaviour of superconducting magnets.
- Developed in collaboration with
 - Oxford Instruments & Siemens Magnet Technology
- Model includes:
 - Superconducting coils
 - Associated structures (formers)
 - Protection circuit

QUENCH Module

- First release
 - Transient thermal
 - Circuit equations
 - Coil inductance matrix must be provided
- Second release (October 2006)
 - Transient thermal
 - Circuit equations
 - Coupled to transient EM simulation (Elektra)

Model required for Quench simulation

- Coil geometry
- Winding orientation
- Turns density and wire data
- Protection circuit
- Material properties
 - Anisotropic non-linear thermal conductivity
 - Non-linear specific heat
 - Non-linear electrical conductivity

Coil specification

- Automatic creation of the winding data from OPERA's standard conductor set
 - Solenoids
 - Racetracks
 - Bedsteads
 - Constant perimeter end
 - Arcs and bars
 - curvy bricks

• Then add materials, heat source, winding, circuit data.....

Coil materials

Set QUENCH Mater	rial Properties	? 🗙
c1	Thermal conductivity Isotropic X bulk_kappar(t) Anisotropic Y bulk_kappar(t) Z bulk_kappaZ(t)	W/m/K W/m/K W/m/K
	Transient thermal properties Specific heat capacity 0.25*nbti_cp(t)+0.5*cu_cp(t)+0.25*epoxy_cp(t) Density (0.25*5.6+0.5*8.7+0.25*1.4)*1000	J/kg/K kg/m³
 SI units CGS units SI (mm) SI (Inches) SI (Microns) 	Wire material properties Elec. conductivity of wire cu_sigma(t) S/m Base name of logging variables c1 Turns density 76*1e4 Turns/m² Area of wire cross section 0.05**2*pi*1e-4 Critical current nbti_jc(tB) A Current of wire C1_I Image: Source Joule heat source	m² A
Apply	OK Cancel Set to air Delete]

Non-linear material properties

- Functional
 - $10^{a+b*\log(t)+c*\log(t)^2+d*\log(t)^3....}$ eg. \bullet
 - (Typical NIST format for material properties)
- Tabulated
 - User defined tabulated function eg. JC(T;B)

Heat sources available in QUENCH

- Joule heating in the normal zone
- Additional heat sources
 - Rate dependent losses

$$\frac{dB}{dt}\frac{2}{3\pi}\lambda_0 J_c(\theta,B) d$$

- Hysteresis losses
-
- Any function of B, dB/dt, T,J

coil	Volume orientation
	Local orientation
	Other
	Other orientation angles
	Theta
	Phi
	Psi
	- Thermal properties
	Heat source definition type
	None From element table file
	Value From nodal table file
	Expression for heat source dbdt*3/(2*pi)*lam

Protection circuits

Set Circuit Data		? 🔀
Type Winding Name c1 Resistance / unit length 0 Turns 1760 Representative filaments 1 Symmetry adjustment 2 Initial current 115 Set Delete Add to loop Add reversed	Name Capacitor Current Inductor Resistor R1 Voltage Winding C1	Current loops Loops loop1 +c1 +R1 New loop Remove Reverse
	Close	

Automating this Process

• A Macro to make this easy for standard quench analyses

👸 Quench Model setup						X
Material property functions						
Specific heat : NbTi NbTi_Cp.table	•	🖌 🛄 Copper Cu_C	p.table	🖌 🛄 Ep	oxy Epoxy_Cp.table	✓ …
Electrical conductivity : NbTi NbTi	sigma.table	Copper Cu_si	igma.table	···		
Coil Material fractions						
Coil 1 Volume fractions: NbTI 0.22	olume fractions: NbTI 0.22		Copper 0.44		Epoxy 0.34	
Coil 2 Volume fractions: NbTI 0.22	Coil 2 Volume fractions: NbTI 0.22 Co		Copper 0.44		Epoxy 0.34	
Coil 3 Volume fractions: NbTI 0.22		Copper 0.44	Copper 0.44		Epoxy 0.34	
Coil 4 Volume fractions: NbTI 0.22		Copper 0.44		Epoxy 0.3	4	
Coil anisotropic thermal conductivity	,					
Coil 1: Radial kappa_trans.table	v .	Azial kappa_trans.table	*	Azimuthal	kappa_along.table	✓ …
Coil 2: Radial kappa_trans.table	✓ .	Azial kappa_trans.table	v	Azimuthal	kappa_along.table	✓ …
Coil 3: Radial kappa_trans.table	¥ [.	. Azial kappa_trans.table	*	Azimuthal	kappa_along.table	✓ …
Coil 4: Radial kappa_trans.table	~ [.	. Azial kappa_trans.table	~	Azimuthal	kappa_along.table	·
NbTi critical current density function	NbTi_Jc.table					·
Output control						
Time step between full solution saves 0.2			Stop time for the simulation 10.0			
Inductance matrix - in Opera Table 1	ile format					
filename PT55_Inductance.table						✓ …
Coil Winding configuration						
Coil 1: Total number of turns 1365.0	Coil 1: Total number of turns 1365.0 Current (Amps) 104.0		Wire radius (cm) 0.05		Filament diameter (microns) 5.0	
Coil 2: Total number of turns 1365.0	Current (Arr	ips) 104.0	Wire radius (cm) 0.05		Filament diameter (microns) 5.0	
Coil 3: Total number of turns 8168.0	Current (Arr	ips) 104.0	Wire radius (cm) 0.05		Filament diameter (microns) 5.0	
Coil 4: Total number of turns 8168.0	Current (Arr	ips) 104.0	Wire radius (cm) 0.05		Filament diameter (microns) 5.0	
Quench initiation point						
Radial position (cm) 22.5			Axial position (cm) 3.2			
Generate the FE mesh YES						~
	0			Quit		

Example Model

• PT55 Polarised target magnet

PT55 magnet parameters

- 60 degree access and exit angles
- Main coil pair 8168 turns/coil
- Correction coil pair 1365 turns/coil
- C361 superconducting wire (2:1 Cu:NbTi)
- Peak Field 5.6T
- Total inductance 98Henries
- Central field 2.5T

Measured and Calculated

PT55 Magnet: Opera-Quench compared to measurement

Time (Seconds)

Results

- Output required
 - As a function of time: Current Resistance Max_Temperature Interlayer_voltage
- In addition, for understanding
 - Full solution saved at specified times
 - For subsequent calculation and display
 - Data available includes: Temperature, Joule heat density, B, dB/dt, thermal conductivity

Temperature at a particular time

cm

oersted

oersted cm

qauss cm

C cm⁻²

V cm⁻¹

S cm⁻¹

A cm⁻²

W

N

J

Resistive loss in the normal zones

Note that all the coils quench in this example, and that the coupled coils quench because dB/dt losses raise them above critical temperature.

CONCLUSIONS

- Coupled Transient thermal and Electromagnetic simulations have been developed to simulate Quenching of superconducting magnets
- Current as a function of time Results compare very well with measurement
- Interlayer voltage as a function of time Results compare reasonably well, but more measurements required

