EM Field Simulation Based on Volume Discretization: Finite Integration and Related Approaches

Rolf Schuhmann

Fachgebiet Theoretische Elektrotechnik (TET), Universität Paderborn

ICAP 2006

Outline

Basic Approaches of Volume-Grid Methods

- Finite Integration / Finite Differences / Finite Elements
- Pros and Cons ...
- Similarities and Differences ...

Advanced Topic

- Conformal Modeling (with Igor Zagorodnov)

Tasks of computational grids

- Allocation of state variables (DoF) of the method: potentials, field components, basis functions, …
- Geometric Modeling (materials, boundaries)

Finite Integration (FIT)

Idea of FIT: Geometrical Discretization

[Weiland 1977]

3

– Faraday's Law $\oint_{\partial A} \vec{E}(\vec{r},t) \cdot d\vec{s} = -\frac{d}{dt} \int_{A} B(\vec{r},t) \cdot d\vec{A} \qquad \forall A \subset \Omega$ $\oint_{\partial A_n} \vec{E}(\vec{r},t) \cdot d\vec{s} = -\frac{d}{dt} \int_{A_n} B(\vec{r},t) \cdot d\vec{A} \qquad \forall A_n \in G$ (arbitary faces) (facets of the grid) "Discretization" = reduce to a finite number of unknowns L_2 $\oint_{\partial A_n} \vec{E} \cdot d\vec{s} = \oint_{L_1} + \oint_{L_2} - \oint_{L_3} - \oint_{L_4} = -\int \vec{B} \cdot d\vec{A}$ $\hat{\vec{b}}_n \coloneqq \int \vec{B} \cdot d\vec{A}$ = grid flux $+\widehat{e}_1 + \widehat{e}_2 - \widehat{e}_3 - \widehat{e}_4 = -\frac{d}{dt}\widehat{\widehat{b}}_n$ (exact) $\hat{e}_n \coloneqq \int \vec{E} \cdot d\vec{s} = \text{grid voltage}$ **Rolf Schuhmann**

Rolf Schuhmann

Finite Integration (FIT)

Idea of FIT: Geometrical Discretization

– Faraday's Law

Building Blocks:

- "Curl Matrix" C ({0,±1}): edge orientations role in local circulation
 - topological: describes structure of the grid (incidence matrix)
 - no metrics
- Integral state variables
 - grid voltage, grid flux
 - not further resolved at this point
- \rightarrow generally available for arbitrary grid types

Finite Integration (FIT)

Further Steps:

- Primary and dual grid (Cartesian or others)
- extend set of state variables:

$$\hat{\vec{d}}_{n} \coloneqq \int_{\tilde{A}_{n}} \vec{D} \cdot d\vec{A} \qquad \hat{\vec{j}}_{n} \coloneqq \int_{\tilde{A}_{n}} \vec{J} \cdot d\vec{A} \qquad \hat{h}_{n} \coloneqq \int_{\tilde{L}_{n}} \vec{H} \cdot d\vec{s} \qquad q_{n} \coloneqq \int_{\tilde{V}_{n}} \rho \cdot dV$$

$$- \text{ ,,dual curl matrix"} \quad \tilde{\mathbf{C}} = \mathbf{C}^{T} \qquad \qquad \tilde{\mathbf{C}} \hat{\mathbf{h}} = \frac{d}{dt} \hat{\vec{\mathbf{d}}} + \hat{\vec{\mathbf{j}}} \qquad \text{ discrete Ampere's law}$$

- "div"-operations: Surface integrals around cells

 - 'Topological' consistency properties (for arbitrary grids):

e.g. SC = 0(corresponding to $div curl \equiv 0$)

Finite Integration (FIT)

Finite Integration Technique

(still missing:)

- Material relations, e.g. $\hat{e}_n \leftrightarrow \hat{\hat{d}}_n$

 Integral interpretation leads to canonical transformation formula (*incl.* area-averaging of permittivity over dual facet)

$$\widehat{\widehat{\mathbf{d}}} = \mathbf{M}_{\varepsilon}\widehat{\mathbf{e}} \quad \text{with} \quad \mathbf{M}_{\varepsilon} = diag\left(\frac{\overline{\varepsilon}\,\widetilde{A}_{n}}{L_{n}}\right)$$

(here: diagonal matrix)

Finite Integration: Matrix operators

- "Topological operators"
 - incidence matrices of the grids can be used as "discrete curl" and "discrete divergence"
 - discretization, no approximation → all continuous properties still valid
 Some catchwords:
 - a "natural discretization" of Maxwell's Equations
 - a general framework for "discrete electromagnetism on a grid"
- "Material operators"
 - the approximations of the method
 - many ways to derive them
 - must fulfill key properties: *consistent*, *symmetric positive definite*

Finite Integration: Matrix operators

Rolf Schuhmann

Finite Differences

for RF-fields: Finite Difference Time Domain (FDTD)

- start with Maxwell's equations in their differential form: curl, $\partial/\partial t$ operators
- 'Staggered grids' in time and space (Cartesian) [Yee 1966]

Discretization + Approximation in 1 step

Rolf Schuhmann

for RF-fields: Finite Difference Time Domain (FDTD)

- start with Maxwell's equations in their differential form: curl, $\partial/\partial t$ operators
- 'Staggered grids' in time and space (Cartesian) [Yee 1966]

$$H_{z,i+\frac{1}{2},j+\frac{1}{2},k}^{n+1} = H_{z,i+\frac{1}{2},j+\frac{1}{2},k}^{n} - \frac{\Delta t}{\mu} \left(-\frac{E_{x,i+\frac{1}{2},j+1,k}^{n+\frac{1}{2}} - E_{x,i+\frac{1}{2},j,k}^{n+\frac{1}{2}}}{\Delta y} + \frac{E_{y,i+1,j+\frac{1}{2},k}^{n+\frac{1}{2}} - E_{y,i,j+\frac{1}{2},k}^{n+\frac{1}{2}}}{\Delta x} \right)$$

"Update Equations"

FIT – FDTD

Finite Integration (FIT) and Finite Differences (FDTD)

- FIT on Cartesian grids + leapfrog time discretization:

FIT: Other Grids

Triangular (tetrahedral) grids:

$$\oint \vec{E} \cdot d\vec{s} = -j\omega \int \vec{B} \cdot d\vec{A}$$
$$\bigcup_{A} \hat{e}_1 + \hat{e}_2 - \hat{e}_3 = -j\omega \hat{\vec{b}}$$

- Operators S,C canonical all topological properties fulfilled
 "Only" needed: new material matrices
- Orthogonality of primary and dual grid: Standard-approach
 (→ diagonal matrix)
- Loss of this orthogonality: special solution needed
- Necessary for stability: symmetric positive definite

FIT: Other Grids

Extension to other grids

So far implemented: (F

> Cartesian, cylindrical (2D/3D) [1983]

triangular (with orth. dual grid)

[van Rienen 1985]

FIT: History of Notations

1966 Yee's Method (FDTD)

1975 E. Tonti: "On the Formal Structure of Physical Theories"

FIT: History of Notations

1980 Taflove: Yee's Method named "FDTD" IEEE T-EMC 22

1980/1986 Nedelec: Edge elements in FE Num.Math. 35/50

$$CD_{B}e = -D_{A}b$$

1986: Curl matrix notated "C" URSI EMTS Budapest

$$e_{i} = \int_{L_{i}} \overrightarrow{E} \cdot \overrightarrow{ds}; \qquad \begin{array}{c} -\overrightarrow{b} = Ce\\ Sb = 0 \end{array}$$
$$b_{i} = \int_{A_{i}} \overrightarrow{B} \cdot \overrightarrow{dA} \qquad \begin{array}{c} \overrightarrow{i} + \overrightarrow{d} = \widetilde{Ch}\\ \overrightarrow{Sd} = q \end{array}$$

1996: Grid voltages and fluxes Int. J. Num Mod. 9

(in PhD-Theses since 1992)

but still the same basic formulas and discretization approach as in 1977!

FIT: General Grids

Back to time domain:

$$\widehat{\mathbf{h}}^{n+1} = \widehat{\mathbf{h}}^n - \Delta t \quad \mathbf{M}_{\mu}^{-1} \quad \mathbf{C} \, \widehat{\mathbf{e}}^{n+\frac{1}{2}}$$
$$\widehat{\mathbf{e}}^{n+\frac{3}{2}} = \widehat{\mathbf{e}}^{n+\frac{1}{2}} + \Delta t \quad \mathbf{M}_{\varepsilon}^{-1} \quad \widetilde{\mathbf{C}} \, \widehat{\mathbf{h}}^{n+1}$$

Update-Equations of explicit scheme

Inverse material operators needed !

- ok for diagonal matrices, but this needs dual-orthogonal meshes

→A motivation for research in this field: to find an explicit time-domain scheme for general tet-grids

Finite Elements

Finite Elements:

- represent solution by basis functions with "compact support"
- low requirements on (type of) computational grid

- low polynomial order (linear, quadratic, ...) \rightarrow rate of convergence

"discretization of (solution) space"

(vs. discretization of operators in FD, FIT)

Finite Elements

Edge Elements (Whitney forms)

- A set of functions for vector-valued problems on simplicial meshes [Whitney 1957, Nedelec 1980]
- tangential continuity

state variables equivalent 🙂

18

Finite Elements

"Whitney Complex"

- defines nodal (W^0), edge (W^1), face (W^2), and volume (W^3) functions
- complete sequence property:

- consistent discretization, e.g. no ghost modes !

[Bossavit 98]

Rolf Schuhmann

Rolf Schuhmann

FE – FIT

Finite Elements: Application to Wave Equation

$$\operatorname{curl} \mu^{-1} \operatorname{curl} \vec{E} - \omega^2 \varepsilon \vec{E} = -i\omega \vec{J}$$
 $\vec{E} = \sum_i E_i \vec{w}_i$

– Weighted residuals: $\int \vec{w}_j \cdot \ldots dV \quad \forall j$

$$\mathbf{A}(E_i) - \boldsymbol{\omega}^2 \ \mathbf{B}(E_i) = \mathbf{r}$$

$$A_{ij} = \int \mu^{-1} (\operatorname{curl} \vec{w}_i) \cdot (\operatorname{curl} \vec{w}_j) dV$$
$$B_{ij} = \int \varepsilon \vec{w}_i \cdot \vec{w}_j dV$$

 $\tilde{\mathbf{C}}\mathbf{M}_{\mu}^{-1}\mathbf{C}\ \hat{\mathbf{e}} - \omega^2 \ \mathbf{M}_{\varepsilon}\hat{\mathbf{e}} = \mathbf{r}$ analogy (for identical grids) ? FIT:

 $\begin{array}{c|cccc} \hat{\mathbf{e}} & \leftrightarrow & (E_i) & \text{degrees of free} \\ \tilde{\mathbf{C}}\mathbf{M}_{\mu}^{-1}\mathbf{C} & \leftrightarrow & \mathbf{A} & \text{stiffness matrix} \\ \mathbf{M}_{\varepsilon} & \leftrightarrow & \mathbf{B} & \text{mass matrix} \end{array}$ degrees of freedom / state variables

Rolf Schuhmann

Finite Elements: Matrices

Stiffness Matrix:

$$A_{ij} = \int \mu^{-1} (\operatorname{curl} \vec{w}_i) \cdot (\operatorname{curl} \vec{w}_j) dV$$

can be identified as

 $(A_{ij}) = \tilde{\mathbf{C}} \mathbf{M}_{\mu^{-1}}^{FE} \mathbf{C} \quad \text{with} \quad M_{\mu^{-1}, ij}^{FE} = \int \mu^{-1} \vec{w}_{i}^{(2)} \cdot \vec{w}_{j}^{(2)} \, dV$

(2nd FE mass matrix for face functions)

Mass Matrix:

- FIT: diagonal for dual-orthogonal grids
- FE: always non-diagonal
 - Cartesian grids: *mass lumping leads to FIT-equivalent matrix!* [e.g. Rylander/Bondeson 2000]
 - Tetrahedral grids: mass lumping fails
 [Bossavit / Kettunen 1999, 2001]
 - (no explicit time domain scheme!)

Finite Elements vs. Finite Integration

- (Lowest order) Whitney functions allow FIT framework in FE
 - topological matrices (incidence relations of grid)
 - material operators
- Hybridization:
 - both methods allow hybrid grids
 - analysis of properties by FE- and/or FIT-theory
 - Example: Hybrid method (Rylander/Bondeson [2000] and Edelvik/Ledfelt [2002])
 - unstructured grids for complex geometries
 - structured (FDTD-) grids elsewhere
 - common stability analysis by re-interpretation of FDTD part as "FE with mass lumping"

Other Methods

Others...

- Basis functions (Whitney or others), but matrices not from FE Galerkin approach
- Example: "FIT with Whitney" (2D) [2001]

derive material operator from exact integration of basis function on dual face

needs modified dual grid for stability

 Example: "Microcell Method" (2D) [Tonti 1975, Marrone 2001]

barycentric dual grid, piecewise constant fields in "micro cells"

Other Methods

Others...

- Hybrid: FIT + Microcell Method [Cinalli et al., Darmstadt, 2004]

- FE: higher order

- "higher order Whitney forms": more DoF per edge / facet
- hierarchical functional spaces
- FIT: higher order
 - no additional DoF
 - larger stencils in material operators
- no FE-FIT correspondence; geometric interpretations?

- Finite Volumes, Discontinuous Galerkin, Generalized FE, ...

Conformal Modeling in a Cartesian Yee-Grid

- allow PEC-interfaces within cells

[Thoma 1997] ("FIT + Partially Filled Cells"), [Dey, Mittra 1997] ("Conformal FDTD")

Rolf Schuhmann

Conformal FIT

Conformal Modeling in a Cartesian Yee-Grid

- allow PEC-interfaces within cells
- omit PEC parts $(\int \vec{E} \cdot d\vec{s} = 0)$
 - → reduced edge lengths $L_{ijk} \rightarrow l_{ijk}$ → reduced facets $S_{ijk} \rightarrow S_{ijk}$
- 2nd order accurate (PEC)
- still diagonal matrices!
- needs smaller time step

[Thoma 1997] ("FIT + Partially Filled Cells"), [Dey, Mittra 1997] ("Conformal FDTD")

Rolf Schuhmann

To keep full time step (numerical dispersion...)

Uniform Stable Conformal scheme (**USC**, 2003)

virtually enlarged cells (off-diagonal entries)

> FE analogon ?? (would need new basis functions)

- simplified conformal scheme (SC 2006):
 - · diagonal matrix with modified components
 - small loss of accuracy, still 2nd order

[I. Zagorodnov]

SC: Validation

Convergence Analysis: Academic example

impress analytical field \rightarrow iterate N time steps $\rightarrow \delta = L_2$ -norm of field deviation

Summary

Concepts of Finite Methods

	continuous	discrete	approximation
FD	Derivatives $\lim_{h \to 0} \frac{f(x + \frac{h}{2}) - f(x - \frac{h}{2})}{h}$	Differences $\frac{f(x+\frac{\Lambda}{2}) - f(x-\frac{\Lambda}{2})}{\Delta}$	locally in difference formulas (Taylor series)
FIT	Circulations $\int_{\partial A} \vec{E} \cdot d\vec{s} \forall A \subset \Omega$	Discrete Circulations $\sum_{i \in \partial_k} \widehat{e}_i \forall A_k \subset G$	locally in material relations (Taylor series)
FE	Solutions space $H(\text{curl}), \text{ dim} = \infty$	Functional Space H_h^p (curl), dim = N	globally (min. resid.): "optimal" solution for chosen space and w.r.t. chosen inner product

Summary

Properties of Finite Methods

	FD / FIT	(Whitney-) FE
Basis functions	possible by re-interpretation	main 🗸 idea
Dual grid	✓ main idea	possible by re-interpretation
Topological Operators S,C	✓ main idea	possible by re-interpretation
Diagonal Material Matrix (explicit in Time Domain)	~	
General Computational Grid	(\)	\checkmark
Higher Order Modeling	(\checkmark
Subcell Methods	\checkmark	

Finite Elements: Cartesian

Mass Matrix: 1) Cartesian grids

 $B_{ij} = \int \mathcal{E} \vec{w}_i \cdot \vec{w}_j \, dV$

Finite Elements: Cartesian

Mass Matrix: 1) Cartesian grids $B_{ij} = \int \varepsilon \vec{w}_i \cdot \vec{w}_j \, dV$

33

Finite Elements: Tetrahedral

Mass Matrix: 2) Tetrahedral grids

 $B_{ij} = \int \varepsilon \vec{w}_i \cdot \vec{w}_j \, dV$

- Dot products $\vec{w}_i \cdot \vec{w}_j$ always $\neq 0$, no diagonal matrix (neither in systems with orthogonal dual grid)
- Mass lumping?

can lead to indefinite matrices (in-stable !) [Bossavit / Kettunen 1999, 2001]

For tetrahedral / triangular grids no explicit time domain scheme with FE-matrices is available

FIT: Conformal Modeling

FIT: Conformal Modeling

– Another way to gain flexibility in geometric modeling:

task of grid: only allocation of components

"Conformal modeling" with Cartesian grids

allow "partially filled cells"

= interfaces to perfect conductors (PEC) within cells

material distribution practically independent of grid!

CFL-Stability

Analyze Stability Situation

- effective material parameters in reduced cells:

$$\varepsilon_{eff} = \varepsilon \frac{L_{ijk}}{l_{ijk}} \nearrow \qquad \mu_{eff} = \mu \frac{s_{ijk}}{s_{ijk}} \searrow \qquad \Delta t_{max} = \frac{\sqrt{\mu_{eff} \varepsilon_{eff}}}{\sqrt{\Delta x^{-2} + \Delta y^{-2} + \Delta z^{-2}}}$$
(edge reduction) (area reduction)
$$- \text{ formula for critical cells:}$$

$$\Delta t \text{ has to be reduced, if}$$

$$\frac{s_{ijk}}{s_{ijk}} < \frac{1}{2} \frac{l_{ijk}}{L_{ijk}}$$
relation between facet- and edge reduction
$$\frac{\Delta L_{max}}{\Delta t_0} = \frac{1}{2} \frac{1}{2} \frac{l_{ijk}}{L_{ijk}} = \frac{1}{2} \frac{1}{2} \frac{l_{ijk}}{L_{ijk}}$$

(1D proof simple, 2D/3D empirical)

[I. Zagorodnov 2006]

Uniform Stable Conformal scheme (USC, 2003)

- virtually enlarge critical cells: enlarged local curl-operation
- unknown fields by interpolation (...)
- enlarged stencil, but only for a small number of critical cells

(non-diagonal
$$\frac{1}{\mu}$$
 -matrix)

- still explicit (efficient), but complicated formulas
- \rightarrow no time step reduction !
- → full 2nd order accuracy of standard conformal FIT

[with I. Zagorodnov]

Simplified Conformal (SC) Method

SC-Scheme = Simpler Approach without Enlarged Stencil

 idea: directly enforce stability constraint ("stability correction" of conformal FIT-coefficients)

- some accuracy is lost, *but only as much as necessary*:
 - → small number of cells: $N_{corr} \ll N_{PFC} \ll N_{tot}$
 - \rightarrow small amount of correction

[with I. Zagorodnov]