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Abstract

The moment method model has been proven to be a
valuable tool for numerical simulations of charged parti-
cle beam transport both in accelerator design studies and
in optimization of the operating parameters for an already
existing beam line. On the basis of the Vlasov equation
which describes a collision-less kinetic approach, the time
evolution of such integral quantities like the mean or rms
dimensions, the mean or rms kinetic momenta, and the to-
tal energy or energy spread for a bunched beam can be de-
scribed by a set of first order ordinary differential equations
(ODEs) under consistent initial conditions. Application of
a proper time integrator to such an ODE system enables
then to determine the time evolution of all involved ensem-
ble parameters. From the vast amount of available time
integration methods different versions have been imple-
mented and evaluated to select a proper one. The compu-
tational efficiency in terms of effort and accuracy serves as
a selection criterion. Among possible candidates of suited
time integrators for the given set of moment equations are
the explicit Runge-Kutta (RK) methods, the implicit theta
methods, and the linear implicit Rosenbrock methods. Var-
ious algorithms have been tested under real-world condi-
tions to select the most suited one for moment method ap-
plications.

INTRODUCTION

Numerical simulations of charged particle beam trans-
port can be realized using either discrete individual parti-
cles or a continuous charge distribution description. In both
cases a discretization process in time and/or space enables
to calculate the time evolution of the charge distribution
supposed an initial state is given. The underlying computa-
tional model has to include all essential physical effects like
the external fields along the different beam line elements,
the particles self fields and the interaction of the particles
with the surrounding materials.

Depending on the operational conditions it is possible
to concentrate on dominant effects like wakefields in colli-
mators in the high energy regime or space charge fields in
injectors in the low energy regime and to neglect unimpor-
tant contributions. Generally, the more physical effects are
included in the numerical model, the more expensive it be-
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comes and the more effort has to be applied to solve these
problems under the restriction of limited resources. Limi-
tations are imposed on the maximal acceptable simulation
time as well as on the available computer storage capac-
ity. In nearly all applications a trade-off between accuracy,
simulation time and memory consumption has to be found.

An efficient numerical method for beam dynamics sim-
ulations has already been discussed by P. J. Channell in
1983 [1]. Instead of an immediate spatial discretization of
the particle distribution, the discrete moments

<µ> =
∫

Ω

µ f(�r, �p ) dr3dp3

of the distribution function f are used for an approximate
description of the particle density distribution. From the
numerical point of view it is advantageous to determine the
overall position and momentum by the first order raw mo-
ments with

µ ∈ {x, y, z, px, py, pz}
followed by the translatory invariant higher order central-
ized moments with

µ ∈ {(x−<x>)lx · (y−<y>)ly · (z−<z>)lz , . . .}
which describe the pure shape of the particle distribution
function in the underlying six-dimensional phase space Ω.
Basically, it is also possible to describe the whole system
using raw moments only, but on account of cancellation
due to the finite number representation, it is preferable
to switch to the centralized versions for higher order mo-
ments.

The given notation is based on a Cartesian coordinate
system where �r = (x, y, z) describes the components of a
spatial vector, whereas �p = (px, py, pz) specifies the cor-
responding momentum. The introduced moments can be
used to characterize the considered particle distribution at
arbitrary time instants.

Starting from the well-known Vlasov equation, a set of
ordinary differential equations in the form

∂ <µ>

c ∂t
= < grad<�r>(µ) > · <

�p

γ
>

+ < grad<�p>(µ) > · <
�F

m0c2
>

+ < grad�r(µ) · �p

γ
> + < grad�p(µ) ·

�F

m0c2
>

is constructed which allows for further determination of the
particle distribution supposed a consistent initial set of mo-
ments is provided. Contributions to the differential equa-
tions can be grouped into a kinematic part and a kinetic
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part, where the first one represents the fundamental inter-
nal feedback and the second one considers the important
interaction with the surrounding beam line elements. Space
charge forces can be incorporated in this way either.

SIMULATION MODEL

The time integrator evaluation study concentrates on a
single rf cavity because all possible contributions to the
Lorentz force, the electric field strength as well as the mag-
netic flux density, are naturally incorporated. Other beam
line components like magnetic multipoles are also applica-
ble but due to the fact that they do not include all the con-
ceivable field components they are not considered in this
study.

Field Distribution

The field components of the mode which is used for ac-
celeration can be transfered from a separate eigenmode cal-
culation to the beam dynamics simulation avoiding a 3-D
field map if one provides merely the longitudinal electric
field component along the axis of rotation. This paraxial
approach allows to reconstruct the whole field within the
cavity on the basis of a polynomial approximation and thus
automatically leads to the desired series expansion of the
applied forces.

In praxis this series has to be truncated at some order be-
cause numerical noise prohibits a further usage. Neverthe-
less, for moment equations up to order n, forces up to order
n − 1 can be provided. The obtained series expansion can
then be incorporated into the specified update equations.

TESLA 9-Cell Cavity

Êacc = 30 MV/m

ϕacc = 295.0◦

Figure 1: 3-D model of a TESLA 9-cell cavity together
with the longitudinal electrical field component of the ap-
plied accelerating mode along the axis of rotation.

An overview of the selected simulation model is shown
in Fig. 1. In addition to the geometric model, the cor-
responding longitudinal electrical field component is also
displayed. The amplitude and the phase offset measured
relatively to the barycenter of the charged particle distribu-
tion are further specified.

Particle Distribution

Following roughly the parameters given by the PITZ in-
jector [2], an ideal electron bunch of Q = −1.0 nC and

kinetic energy Ekin = 5.0 MeV is assumed. To properly
evaluate the performed beam dynamics simulations based
on the moment approach the same situation has been mod-
eled paralelly using the conventional particle tracking code
ASTRA [3]. The particle distribution is specified to be
of Gaussian shape in transversal and of rectangular shape
in longitudinal direction according to the data specified in
Fig. 2.
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Figure 2: Particle distribution in the transversal and longi-
tudinal direction used as an initial condition for the time
integration process.

In the performed simulations, moments up to the fourth
order have been considered. All moments constituting the
initial particle ensemble have been calculated analytically
using the specified distribution function. Since the results
of the particle tracking algorithm are intended to serve as a
reference, a series of initial bunches consisting of 125000,
250000 and 500000 computational particles has been eval-
uated.

Because no further improvement between the last two
simulations has been observed, the result obtained using
the highest amount of particles has been defined as a ref-
erence. In Fig. 2, a selection of calculational particles to-
gether with the defining distributions functions are shown
to get an impression of the initial particle distribution.

TIME INTEGRATION

The time evolution of all moment quantities is governed
by the stated fundamental set of differential equations. Be-
cause each specified time derivative is generally related to
all proposed moments it is convenient to define a compre-
hensive solution variable y which includes all specified mo-
ments in a single mathematical variable. The data can be
organized in a way that starting with the 6 first order raw
moments the following 21 centralized second order mo-
ments are assigned. If required, all higher order moments
can be appended successively.

The new time dependent solution variable y(t) conse-
quently represents all moments of the particle distribution
function at a time instant t where the initial distribution is
characterized by y(0). The whole physical model can then
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be written in the standard mathematical form

y′(t) = f(t, y(t)) , y(t0) = y0

where y′ indicates the time derivative and f summarizes
the effects given by the already specified kinematic and ki-
netic parts. The variable y0 represents the initial particle
distribution.

Runge-Kutta Methods

Following the ideas given in [4, 5], the specified ODEs of
first order can be effectively treated using one-step Runge-
Kutta type methods. Various methods have been imple-
mented and tested to select a suitable one for the effective
time integration of the given differential equation:

Method Order Scheme
Crank-Nicolson 2 implicit
RK-Heun 3 explicit
RK-Classic 4 explicit
RK-Fehlberg 4 explicit
Rosenbrock 4 implicit

Once any explicit RK method is implemented, it is pos-
sible to switch to a similar method without big efforts. Ac-
cording to the corresponding Butcher tableau, only a few
changes in the parameters describing the abscissa values of
the applied stages, the weighting coefficients of the stages
within the first-order approximations and the final weight-
ing coefficients to determine the higher order solution for
each time step are necessary.

All methods except the Rosenbrock method process the
nonlinearities by functional iteration. The Rosenbrock
type methods introduce a sequence of linearized systems
to avoid the solution of nonlinear equations. Applying a
symbolic algebra program it is possible to determine the
indispensable Jacobian right from the specified moment
equations. Due to performance reasons this time depen-
dent derivative matrix is evaluated only at the beginning of
each time interval and is supposed to be constant during
the evaluation of all subsequent stages thus allowing sig-
nificant CPU time savings [5].

SIMULATION RESULTS

On the basis of the specified benchmark problem vari-
ous simulations using the moment method approach have
been performed. Important beam dynamics parameter like
the kinetic energy, the bunch dimensions and the projected
emittances have been compared to the ASTRA simula-
tion results. The moment approach, implemented in V-
CODE [6], has been performed using moments up to the
fourth order and a time step ranging from c ·∆t = 1.5 mm
to c · ∆t = 1.5 µm. For small time steps one can hardly
distinguish between the V-CODE and the ASTRA results.
Hence, to clearly demonstrate the behavior of each imple-
mented time integration method in the following discus-
sion only the difference to the reference solution is shown.

Hereby, the solution of the moment approach with the con-
stant time step c · ∆t = 1.5 mm is used.

Kinetic Energy

The kinetic energy of the bunched particle beam in-
creases continuously from the given initial value Ekin = 5
MeV to the final value of approximately Ekin = 20 MeV.
According to Fig. 3, even for the coarse time stepping pro-
cedure a rather small relative deviation in the order of 10−3

can be observed.
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Figure 3: Deviation of the kinetic energy.

Comparing all the implemented integrators one can ob-
serve that only the solution given by the Rosenbrock
method can be distinguished from the others.

Bunch Dimensions

The numerical simulation of the bunch parameters al-
lows to reveal clearly the individual time integrator capa-
bilities.
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Figure 4: Deviation of the bunch width.

In Fig. 4, one can observe that the second order Crank-
Nicolson scheme performs better than the higher order time
integrators. Even though all results are acceptable for real-
world simulations, a first indication for the decision pro-
cess can be noticed. On account of the weak coupling be-
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tween the transversal and the longitudinal dynamics, the
rms-length of the particle distribution behaves differently.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Longitudinal Distance / m

0.4

0.6

-0.6

-0.4

-0.2

0.0

∆ 
B

un
ch

 L
en

gt
h 

/ µ
m

0.2

Crank-Nicolson
RK-Standard
RK-Fehlberg

RK-Heun

Rosenbrock

Figure 5: Deviation of the bunch length.

In Fig. 5, the simulation results for the bunch length rel-
atively to the reference solution are displayed. One can
observe that nearly all integrators underestimate the bunch
length whereas only the Heun method overestimates this
parameter for the given time step size.

Transversal and Longitudinal Emittance

A very sensitive parameter for charged particle beam
characterization is given by the projected beam emittance

εν =
√

<r2
ν ><p2

ν > − <rνpν >2 , ν ∈ {x, y, z}

where rν and pν are the centralized position and momen-
tum vectors, respectively. The sensitivity arises from the
subtraction of two nearly identical expressions. It is used
as a quality measure for charged particle beams. As it is
already accomplished in the previous plots, only the differ-
ence to the reference solution is given in Fig. 6 even though
the deviation here is in the range of the simulated values.
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Figure 6: Deviation of the transversal emittance.

Although the results get much better if one uses smaller
time steps it can be noticed that only the classical RK-
Standard method and the scheme proposed by Fehlberg

provide acceptable results even if rather large time steps
are chosen.
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Figure 7: Deviation of the longitudinal emittance.

Taking also the absolute values of the simulation re-
sults into account it can be observed, that the longitudinal
emittance is simulated more accurately than the transver-
sal one. All integration methods except the Heun and the
Rosenbrock methods provide satisfactory results as shown
in Fig. 7.

CONCLUSIONS

The implemented time integration schemes given by
Heun and Rosenbrock perform worse compared to the
Crank-Nicolson, the RK-Standard and the RK-Fehlberg
methods. Even though the Crank-Nicolson scheme is able
to model accurately the bunch dimensions especially for
the transversal emittance calculations, the RK-Standard
and RK-Fehlberg methods perform better. Since no clear
advantage can be traced between these two numerical
schemes and due to the fact that none of them failed in
all tests, both methods can be considered as reliable and
suitable for time integration based on the moment method.
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