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Abstract

Fast kicker modules represent a potential source of beam
instabilities in the planned Facility for Antiproton and
Ion Research (FAIR) at the Gesellschaft fr Schwerionen-
forschung (GSI), Darmstadt. Containing approximately six
tons of lossy ferrite material, the more than forty kicker
modules to be installed in the SIS-100 and SIS-300 syn-
chrotrons are expected to have a considerable parasitic in-
fluence on the high-current beam dynamics. In order to be
able to take these effects into account in the kicker design,
a dedicated electromagnetic field software for the calcula-
tion of coupling impedances has been developed. Here we
present our numerical results on the longitudinal and trans-
verse kicker coupling impedances for the planned compo-
nents. Besides the inductive coupling of the beam to the
external network -relevant below 250 MHz- particular at-
tention is paid to the impact of ferrite losses up to the beam-
pipe cutoff frequency.

INTRODUCTION

Ensuring the stability of high-intensity ion beams is
one of the most important research and development goals
within the design work of the planned Facility for Antipro-
ton and Ion Research (FAIR) at the Gesellschaft für Schw-
erionenforschung (GSI), Darmstadt. Currently, detailed
beam dynamics studies are aiming at optimizing critical
parts of the existing and the planned parts of the acceler-
ator.

The goal of the work presented here is to character-
ize the various planned kicker devices of the SIS-100/SIS-
300 synchrotrons (injection, extraction/emergency, trans-
fer, and Q kickers) in terms of their coupling impedances,
which in turn can be used as input data for beam stability
investigations. In this way, the parasitic influence of the
kickers on the ion beam can be quantified during the de-
sign phase, and, if needed, reduced by the optimization of
the devices. As we have demonstrated in previous publi-
cations [1, 2, 3], numerical field calculations offer a con-
venient way of providing coupling impedance data without
the need of protoypes. Moreover, comparisons with mea-
surements have shown the reliability of computer simula-
tions in this respect (see Arevalo et al., this conference).

Here, we review the essential numerical aspects of our
dedicated impedance code, before discussing in detail the
simulation results for one of the SIS-100 kickers.

∗Work supported by the GSI and the DFG under contract GK 410/3
∗∗ doliwa@temf.tu-darmstadt.de

Definitions

We follow the notation of [4]. The vertical coupling
impedance is defined by

Zy(ω) ≡ i
qd

∞∫

−∞

dz (Ey + βcBx) |(0,0,z;ω)e
ikz, (1)

where βc is the velocity of the beam and k = ω/βc. The
electro-magnetic field (E(x, y, z; ω), B(x, y, z; ω)) is due
to the source current, j(x, y, z; ω), given by jx = jy = 0,
and

jz(x, z, y; ω) = qδ(x)δ(y − d)e−ikz , (2)

which is the frequency-domain description of a point
charge q travelling along the z-axis with velocity βc and
vertical offset y = d, i.e.

jz(x, z, y; t) = qβc δ(x)δ(y − d)δ(z − βct).

We remark that the offset d is essential to the definition of
Zy , as well as the fact that fields in Eq. 1 are evaluated at
x = y = 0. Analogous expressions can be written down
for the horizontal coupling impedance.

Please note that, after our convention, the fields E and
B carry the units of Vs/m and Ts, respectively, as they con-
stitute spectral densities. Similarly, [j] =As/m2, so that Zy

has the unit of Ω/m. The reason for the ocurrence of 1/m is
that Zy represents an impedance per transverse displace-
ment, d: For small enough d, Zy is expected to become
independent of d, which is why this parameter has been
suppressed in Zy(ω). Note that in the center of a sym-
metrical device, there cannot be any transverse force, i.e.
limd→0 Zyd = 0, whereas in general Zy �= 0.

The longitudinal coupling impedance is defined by

Z||(ω) ≡ − 1
q2

∫
dV j∗ · E, (3)

with the current of Eq. 2 at d = 0.

Two-wire Approximation

Expression Eq. 1 for the vertical impedance can be recast
into a form that is more convenient for computations by
using Faraday’s law [4],

Zy(ω) ≈ −1
kq2(2d)2

∫
dV E(2) · j(2). (4)

The superscript indicates that the excitation current con-
sists of two anti-parallel currents with separation 2d, i.e.
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j
(2)
x = j

(2)
y = 0,

j(2)
z = qδ(x) (δ(y − d) − δ(y + d)) e−ikz . (5)

In the derivation of Eq. 4, a partial derivative ∂yEz is
replaced by a difference quotient, meaning that it is an
approximation of Eq. 1 which becomes exact for d →
0. Eqs. 4 and 5 are the ’2-wire’ representation of the
transverse, vertical coupling impedance. The horizontal
impedance, Zx, can be expressed in a similar way.

Eqs. 3 and 4 show why calling Zx, Zy , and Z||
impedances is plausible, as they are given by integrals over
power densities, devided by the current squared (leaving
alone the factor 1/kΔ2 for the transverse case). The minus
sign ensures that their real parts are positive or zero because
the integral over a power density must always be negative
in a passive device - the beam can only lose energy.

COMPUTATIONAL APPROACH

Discretization of the Field Problem

We solve the wave equation

∂ × μ−1∂ × E − ω2εE = −iωj (6)

within the framework of the Finite Integration Technique
(FIT), first proposed in [5], see also [6]. This scheme al-
lows the approximation of Eq. 6 by the system of linear,
algebraic equations,

CT M−1
μ C�e − ω2M ε

�e = −iω
��

j (7)

the unknowns of which (�e ≡ {ei}) are the line integrals
of the electric field along the edges of a structured, hexag-
onal grid. The righthand-side excitation

��

j is a vector of
currents through dual x − y grid facets [7]. Alternatively,
��

j can be conceived as a filament current along the primary
grid edges (see next section). The matrix C may be inter-
preted as a discretized version of the continous curl opera-
tor, whereas the matrices M ε and Mμ reflect the permit-
tivity and (complex) permeability, respectively, plus mesh
metrics [8].

Discretization of the Beam Current

The beam currents given by Eq. 2 (d = 0, computa-
tion of Z||) and Eq. 5 (Zy calculation) are approximated by
one or two filament currents on the primary FIT grid along
the z-axis, respectively. Each filament segment carries the
phase exp(−ikz) corresponding to the center of the respec-
tive grid edge.

As in the discrete setting the delta functions are approx-
imated by Kronecker deltas w.r.t. grid indices, one may
wonder which effective thickness the single excitation fila-
ments have. By comparing simulation results with analyt-
ical expresssions for simple 2D models, we found that the
effective radius of a filament is approximately one half of
the transverse spacing of grid lines [9]. Comparing com-
putations with different mesh resolutions, we found that

kicker coupling impedances are rather insensitive to the
thickness of the filaments (data not shown here).

Boundary Conditions

In our simulations, the walls of the vacuum vessel con-
taining the kicker module are assumed to be perfectly con-
ducting (i.e. tangential electrical fields vanish on the wall).
At the beam-entry and exit planes zmin and zmax, however,
special boundary conditions are needed, which we discuss
in the following. Generally, the transitions from the mod-
ule to the adjacent beam pipe have to be included into
the computation, since jumps in pipe cross sections are
known to contribute to the coupling impedance. For fre-
quencies below beam-pipe cutoff, the additional field ex-
cited within the module decays exponentially into the beam
pipe. Thus, at some distance along the beam pipe, the
perturbation resulting from the module can be neglected
and fields can be considered stationary in the sense that
(E, B)pipe ∝ exp(−ikz), where k = ω/βc. Using this
property, we set up boundary conditions for the 3D problem
by solving for (E, B)pipe in a 2D cross section of the beam
pipe. For a complete discussion of beam-adapted boundary
conditions, see [10].

Solution of the Linear Equations

The solution of the complex-symmetric, non-hermitian
linear system, Eq. 7, is carried out as follows. We split
the solution into two contributions, �e = �e0 + �edyn, which
satisfy C�e0 = 0 and GT M ε

�edyn = 0. Here, G denotes
the discrete gradient operator (a grid incidence matrix as
is C). Non-trivial (multiple-connected) model topologies
do not lead to an additional term in the decomposition, be-
cause all boundaries are perfectly conducting. First, the
’electrostatic’ contribution is determined from the system,

GT M ε
�e0 = − 1

iω
GT ��

j , (8)

the righthand side of which represents the vector of discrete
charges. Knowing the solution �e0 enables us to rewrite
Eq. 7,

CT M−1
μ C�edyn − ω2M ε

�edyn = −iω
��

j + ω2M ε
�e0. (9)

The righthand side, b, of Eq. 9 (abbreviated by A�edyn =
b) is discretely divergence free, i.e. GT b = 0, which is
favorable for the solution of Eq. 9 by a Krylov subspace
solver, as we will see in the following. As a next step,
Eq. 9 is rescaled by the inverse square root of the diagonal
matrix M ε:

M−1/2
ε CT M−1

μ CM−1/2
ε

�e′
dyn − ω2�e′

dyn = M−1/2
ε b,

(10)
(abbreviated by A′�e′

dyn = b′) with the rescaled unknown

vector �e ′
dyn ≡ M1/2

ε
�edyn. The advantage of this form is

that the subspaces Kn =
{
b′, A′b′, A′2b′, ..., A′nb′

}
, pro-

duced by a Krylov iteration scheme, always fulfill Kn ⊂

WEA4IS02 Proceedings of ICAP 2006, Chamonix, France

278 Numerical Methods in Field Computation
Solver Techniques



{
�e′|GT M1/2

ε
�e ′ = 0

}
, so that the convergence of the lin-

ear solver is not impaired by the null-space of the curl-curl
operator.

The iterative solution of Eq. 10 constitutes the bottleneck
in the computation of �e. The reason is that the large perme-
ability difference between vaccum and ferrite parts results
in a large condition number of the system matrix, A′, lead-
ing to a slow convergence of the Krylov subspace solver. In
our code, we have used the Trilinos linear algebra library,
which offers various types of iterative solvers and power-
ful preconditioners [11]. After our experience, however,
the most efficient and robust way to solve the complex-
symmetric Eq. 10 is to use the conjugate-orthogonal conju-
gate gradient algorithm (COCG) [12], without any further
preconditioning. Thus, the rescaling of Eq. 9 leading to
Eq. 10 already constitutes a near-optimum preconditioning.
This fact has also been reported in [13].

Inclusion of the Pulse-Forming Network (PFN)

It is well known that in a kicker device, a charged particle
beam, displaced from the axis into the kick direction, cre-
ates an oscillating magnetic flux in the perpendicular trans-
verse direction. This flux couples to the kicker-magnet coil,
inducing an oscillating voltage at the plugs of the external,
pulse-forming network (PFN), and thus a current through
the PFN. As the PFN acts back on the beam through the
magnet coil, it is important to include this effect into the
EM field simulations. The PFN is not taken into account
explicitly in our field computations, instead we use the
equivalent lumped impedance, Zg(ω) as its representation.
At a given frequency, Zg(ω) is introduced into the simula-
tion as follows. One first localizes one of the FIT grid edges
that join the two ends of the magnet winding (the ends are
supposed to be one grid line apart). One then modifies the
material matrix M ε at the respective component j,

(M ε)jj → (M ε)jj +
1

iωZg(ω)
. (11)

SOFTWARE

Constructing the computational models, meshing, and
visualization of calculated fields has been done with the
commercial program CST MICROWAVE STUDIO(R) [14].
Since this tool is partly based on the Finite Integration
Technique, it is able to produce the mesh and material data
needed.

The implementation of the impedance code, i.e. the
FIT electromagnetic field solver, pre- and postprocessing
has been carried out in a hybrid C++/Python framework.
Most of the code specific to our application has been im-
plemented in Python [15], while the performance-critical
linear-algebra computations are carried out within C++
subroutines (most notably of the Trilinos linear algebra
package [11]).

Making the coupling impedance data of the SIS-100/300
kickers available to beam-dynamics simulations is the pri-

Figure 1: CAD model of one of the six modules of the SIS-
100 extraction/emergency kicker. Ferrite (8C11) length:
90cm, ferrite thickness: 4cm, window width: 15.5cm, win-
dow height: 13cm (minus 2x coil thickness), coil thickness:
0.5cm. The ceramic is specified with εr = 9.6, μr = 1.
Discretization is performed on a cartesian FIT grid with
180090 grid points. The number of unknowns (electric grid
voltages) is 264827. (a) total view of the model. (b) details
of the coil (two windings).

mary goal of the present work. In order to keep track of
the many data sets gained for different parameters we have
chosen to implement a Python-based database management
which comprises containers for raw impedance data as well
as methods for its further processing. Automatic interpola-
tion between simulated frequency points and values of β,
as well as more complicated tasks as implicitly processing
raw impedance data within a PFN model (see next section)
are required. The advantage of using the programming
language Python for these tasks is that creating, storing,
and interactive manipulation of ’intelligent’ datasets (i.e.
classes) is a built-in feature. Moreover, the code and data
are largely platform independent.

EXAMPLE: THE SIS-100
EXTRACTION/EMERGENCY KICKER

For reasons of brevity, we consider only one of the SIS-
100 kickers in the following. Figure 1 depicts one of
the six extraction/emergency kicker modules. The bipolar
magnet contains two windings and 4cm-thick ferrite plates
of length 90cm. The beam-induced heating of the ferrite
has been reduced by metal (’eddy-current’) strips. A ce-
ramic pipe leads through the magnet so that ferrite parts
are placed outside of the UHV.
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PFN-Dominated Regime

As described above, the beam current used in transverse
impedance calculations is modelled as a twin-wire excita-
tion. From the setup of the SIS-100 extraction/emergency
kicker (Fig. 1), we see that the kick direction is vertical (y),
since the winding creates a magnetic field pointing into the
x-direction. Very much like in an ordinary transformer, the
magnetic flux created by the two-wire excitation Eq. 5 used
in the calculation of Zy couples to the magnet winding. As
described above, the consequent footprint of the PFN can
be obtained by including the equivalent lumped impedance
of the PFN, Zg(ω), into the EM field simulation. At the
time of this writing, however, the SIS-100 PFNs are still
in the design phase, so that only preliminary impedances
Zg(ω) are available.

It is therefore of interest to parameterize the transverse
kicker impedance in terms of an arbitrary PFN impedance
Zg(ω). An approach to achieve this has been proposed by
Nassibian and Sacherer [16]. Interpreting the beam current
and the kicker-magnet coil as the primary and secondary
winding of a transformer, respectively, they developed a
simple model for the inductive coupling of the beam to the
PFN. Following a very similar route, slightly generalizing
their argument, we have proposed the following parameti-
zation [2]:

Zy(ω) = a(ω) − b(ω)
c(ω) + Zg(ω)

. (12)

The value of Eq. 12 is that, knowing a, b, and c, one is able
to specify Zy in terms of a given, arbitrary PFN impedance
Zg . The only assumptions used in the derivation of Eq. 12
are the linearity of Maxwell’s equations and the absence of
wave effects in the winding. The parameters a(ω), b(ω),
and c(ω) can be obtained from numerical field simulation
by computing three frequency sweeps of Zy for different
Zg’s, e.g. Zg ∈ {0,∞, 50 Ω}.

The corresponding data are shown in Fig. 2 for f <
50MHz. In the case Zg ≡ 0 no net magnetic flux is able
to reach the ferrite parts through the left (−x) or right side
(+x) of the kicker window (after Faraday’s law). Hence,
the observed losses are comparably small for the shorted
termination. For Zg = ∞ (open), we observe a resonance
at 5.5MHz, which is due to the interplay between the ca-
pacitance and the self-inductance of the magnet winding.

The vertical coupling impedance expected with real PFN
is depicted in Fig. 2, bottom. The Zg(ω) data used to pro-
duce this plot in connection with Eq. 12 has been computed
by a SPICE simulation [17]. The oscillations in Zy are due
to resonances in the pulse transmission cables.

Considering higher frequencies, one expects that the in-
ductive coupling to the PFN becomes less pronounced, be-
cause the phase factor inherent to the beam excitation cur-
rent, exp(−ikz), causes sign changes of the current within
the magnet, implying partial cancelation of magnetic flux
through the windings. As the magnet has the length 0.9m,
a phase change of 2π within the magnet corresponds to
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Figure 2: Vertical coupling impedance (β = 1) for the SIS-
100 extraction/emergency kicker in the PFN-dominated
frequency regime, for different termination resistences
(top: short, 50Ω, middle: open, bottom: the planned bipo-
lar PFN).

f ≈ 333MHz (β = 1). Figure 3 supports this reasoning,
because the difference between different magnet termina-
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Figure 3: Vertical coupling impedance for the same three
kicker terminations as in Fig. 2, β = 1. For frequen-
cies above 250MHz, the PFN coupling is neglected, since
curves coincide to a good approximation.

tions becomes small above 250MHz. We therefore neglect
the PFN coupling of the extraction/emergency kicker for
frequencies above 250MHz.

In contrast to Zy, the horizontal and longitudinal
impedances (Zx, Z||), are largely insensistive to the PFN
impedance Zg; see [2] for a demonstration of this fact.

Ferrite-Dominated Regime

In the frequency regime above 250MHz, losses due
to the motion of Weiss domain boundaries in the fer-
rite [18] dominate ReZy . Since the manufacturer’s data
sheet (www.ferroxcube.com) for the permeability of the
ferrite 8C11 only covers frequencies up to 100MHz, we
have continued μ(ω) up to the cutoff frequency of the beam
pipe (1.325GHz) by the scaling laws given in [18]. Figure 4
shows the corresponding simulation results for Zy, Zx and
Z||.

As for the low-frequency, PFN-dominated regime, one
would like to have a physical model for the present high-
frequency range. The successful application of the analyti-
cal transverse impedance formula proposed by Zotter [19]
to the CERN MKE kicker [20], i.e. the agreement with
measurements and own simulations motivated us to apply
the formula to the SIS-100 extraction/emergency-kicker.
However, as can be seen from Fig. 4 (middle), Zotter’s pre-
diction of Zx is in disagreement with the observations from
respective simulations. In particular, the resonance peak
of ReZx, observed at approximately 740MHz, is much
sharper than that predicted analytically. It is a matter of
our current research to explain this discrepancy.

CONCLUSIONS

We have reported on our ongoing effort to tabulate the
coupling impedances of the SIS-100/300 kickers using
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Figure 4: View of the simulation results for vertical (top),
horizontal (middle), and longitudinal (bottom) coupling
impedances for the SIS-100 extraction/emergency kicker,
β = 1.
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electromagnetic field simulations. After reporting the com-
putational features of our dedicated impedance software,
results for one SIS-100 kicker type have been discussed in
detail. Although impedance calculations are still time con-
suming (e.g. one week on a two-processor, 3GHz machine
for the results presented here), computer simulations have
proven as a convenient method to support the kicker design.
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