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Abstract

Wake fields are a limiting factor due to their collective
effects. In colliders and high energy accelerators used in
FEL projects short bunches excite high frequency fields
which make the computation of near range wake fields dif-
ficult due to resolution problems. Additionally, the length
of modern accelerating structures limit the various abilities
of codes such as TBCI or MAFIA[1] due to limited mem-
ory. Both limiting factors, i.e. short bunches and length
of accelerating structures – a multi-scale problem, can be
dealt with in the following way. Using zero dispersion di-
rections of the leap-frog update scheme on a usual Carte-
sian grid leads to a decrease of the overall dispersion which
usually arises by having discrete field values. Combined
with a conformal modeling technique allowing for simula-
tions using the full time step given by the Courant criterion
a moving window technique can be applied. Thus, simu-
lations of short bunches in long structures are possible –
dispersion and memory problems have been avoided. Re-
sults for common structures of accelerator physics – such
as collimators, tapers and the TESLA nine cell structure are
shown.

INTRODUCTION

In this work ROCOCO (Rotated mesh and conformal
code) is presented. The zero dispersion algorithm uses a
new discretization scheme based on a rotated mesh com-
bined with the established USC scheme [2] scheme and a
moving window technique. The advantage of an explicit al-
gorithm is joined with the zero dispersion along the beam’s
propagation direction.

The dispersion properties of a numerical algorithm are
usually investigated by a von Neumann dispersion analysis.
This analysis yields a numerical dispersion depending on
the directions in a Cartesian mesh.

The well known leap-frog update scheme has maximum
dispersion along the edges of a mesh cell (Fig.1). In con-
trast to this it has zero dispersion along directions which are
aligned to the diagonals of the mesh cell, i.e. the diagonal
of a square (2D) or the diagonal of a hexaeder (3D).

PROPERTIES OF THE ALGORITHM

The basic idea of ROCOCO (2D) is to utilize the
dispersion-less directions provided by the time integration
scheme. One of these dispersion-less directions is aligned

∗ This work was partially funded by EUROTeV (RIDS-011899) and
DESY Hamburg.

∗∗hampel@temf.tu-darmstadt.de

Figure 1: Dispersion error (qualitative) versus angle for the
leap-frog update scheme. A mesh cell is indicated by the
dashed lines.

with the bunch’s direction of motion by rotating the mesh
by an angle of 45◦.

Building the Mesh and Discretization

Starting from a rotated mesh, the rest of the algorithm
is realized straight forward. Maxwell’s equations for a cir-
cular cylindrical symmetric structure and symmetric fields
(m = 0)

∂thφ = − 1
μφ

(∂zer − ∂rez) (1a)

∂ter =
1
εr

(−∂zhφ) (1b)

∂tez =
1
εz

1
r
∂r (r · hφ) + jz (1c)

are discretized on this rotated mesh. Considering a ro-
tation of the two base vectors �er and �ez by 45◦ yields two
new base vectors �eu and �ev. This is shown in the sketch in
Fig. 2.

In order to advance a charge distribution moving at the
speed of light c0 by one mesh step Δz in a standard Carte-
sian mesh the time step Δt has to be chosen according to
Δt = Δz

c0
. This time step will lead to instabilities because it

violates the Courant criterion Δt ≤ Δz
c0·

√
2

. The rotation of
the mesh enables one to meet the Courant criterion exactly.
Referring to the new coordinates the time step needed for
an advance of one mesh step in the beam direction becomes
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Figure 2: Standard mesh cell (a), rotated mesh cell (b)

Δt = Δv
c0·

√
2

which is identical to the upper limit given by
the Courant criterion.

The change from (r, z) to (u, v) can be applied to the set
of equations 1a-1c obtaining

∂thφ = − 1
μφ

(∂veu − ∂uev) (2a)

∂teu =
1
εu

1
r

(−∂v (r · hφ)) + ju (2b)

∂tev =
1
εv

1
r

(∂u (r · hφ)) + jv . (2c)

Excitation

In a next step the exciting fields of a bunch have to be in-
troduced. Gaussian shaped bunches have been used in the
following examples. Applying currents according to the
equations 2b-2c would lead to a full field formulation, i.e.
the total field is involved in the time update scheme. A bet-
ter way to implement the excitation is to apply a scattered
field approach [3]. Fulfilling the boundary conditions for
the total fields total = (s)cattered + (e)xciting on the
surface of the structure, allows for a separation of the scat-
tered and the exciting fields (equations 3a-3c). The excited
fields are determined only once. They appear as an addi-
tive driving term in equations 3a-3c and therefore they do
not experience numerical dispersion. Thus, only the scat-
tered fields take part in the time update scheme and noise
is reduced.

∂th
s
φ = − 1

μφ
(∂ve

s
u − ∂ues

v) −
(

1 − μ0

μφ

)
∂th

0
φ (3a)

∂te
s
u =

1
εu

1
r

(−∂v

(
r · hs

φ

)) −
(

1 − ε0
εu

)
∂te

0
u (3b)

∂te
s
v =

1
εv

1
r

(
∂u

(
r · hs

φ

)) −
(

1 − ε0
εv

)
∂te

0
v . (3c)

Furthermore, in contrast to a current excitation on axis,
the excited fields only have to travel from the surface to
the axis. This minimizes a source of additional dispersion
errors. The discretization of the set of equations 3a-3c is
done using the Finite Integration Technique [4, 5].

Moving Window Technique

Since the simulations are done using an ultra relativistic
bunch, i.e. v = c0, no fields can travel in front of the bunch.
This enables one to use a moving window technique [6] to
minimize memory needs. Only the region of the structure
covered by the bunch has to be stored in memory when
calculating near range wake fields. Therefore, the physical
length of the structure to be simulated, is not limited by
memory anymore.

Finally, the approximation of the surface of the structure
is done. Many conformal techniques like PFC [7, 8] reduce
the time step locally compared to the maximum time step
given by the Courant limit. The USC uses an approach of
enlarging a partially filled cell by interpolations incorporat-
ing neighboring cells. A time step reduction is not needed
any more. This conformal scheme can be combined with
the rotated mesh approach.

The assembly and manipulating of the material matrices
can be done on the fly, i.e. only on the front side of the
moving window.

Indirect Integration

In order to obtain the wake potential from the wake fields
one has to integrate Ez along the structure’s axis. This in-
tegral has limits to infinity. Therefore it is not possible to
calculate the wake potential by a direct integration on the
axis. One has to stop the integration at a finite position
which leads to inaccurate results. Using an indirect inte-
gration technique [9] enables one to perform the integration
in between finite limits. Additionally, the technique allows
for integrating along arbitrary paths [10]. Thus, structures
such as tapers and collimators can be simulated.

EXAMPLES AND RESULTS

For verification purposes different structures are simu-
lated. First a hypothetical structure of 20 TESLA-like cells
is simulated in order to check for the absence of accumulat-
ing errors in long time simulations. The next two examples
are more practical ones. Secondly a small part of the PITZ
setup [11] is simulated and thirdly a cylindrically symmet-
ric collimator is investigated.

20 Cell TESLA-like Structure

This hypothetical structure is used instead of a TESLA
9 cell structure to investigate the occurrence of accumulat-
ing dispersion errors. The results obtained using ROCOCO
are compared to simulations done with ECHO. The param-
eters of the simulation are σ = 1 mm and the charge of
the bunch is q = 1 nC. Five mesh cell diagonals are used to
resolve one σ. The resolution used in ECHO is of a compa-
rable value. Both resolutions do not match exactly because
the edge of a cell (ECHO) has to be compared with the di-
agonal of a cell (ROCOCO) which is larger by a factor of√

2.
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Figure 3: ECHO, ROCOCO (staircase), ROCOCO – σ = 1
mm, 5 cell diagonals per σ. The driving Gaussian charge
distribution is shown qualitatively.

In Fig. 3 three results are shown. The black line repre-
sents the ECHO result. Grey dots and gray circles indicate
the results of ROCOCO. The dots show the conformal re-
sult and the circles show the result using a staircase approx-
imation of the surface.
To emphasize the conformal approximation of the surface
the near range wake potential is shown zoomed in Fig. 4.
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Figure 4: ECHO, ROCOCO (staircase), ROCOCO – σ = 1
mm, 5 cell diagonals per σ. The markers (gray circles and
gray dots) are the same as in the previous figure (Fig. 3).

It is obvious that the staircase approximation of the sur-
face leads to a less accurate result as the two results ob-
tained using a conformal approximation of the structure.

Step in the PITZ Gun

In the setup of the PITZ gun a change of the radii of the
inner tube of the coupler antenna and the following beam

tube is present. This step is simulated and a study to inves-
tigate the effect of a tapering is done. Basically the radius
changes from 16.75 mm to 18.5 mm.

Figure 5: Step in the PITZ gun. Angles of the tapers are
not to scale.

One simulation is done for a step, i.e. the radius jumps
from one value to the other one. Four simulations follow
using different angles for a taper.

The bunch charge q is 1 nC and the bunch has a σ of 2.5
mm. For the angle of the taper the four angles 45◦, 20◦, 8◦

and 4◦ are used.
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Figure 6: Wake potential of a tapered step in the PITZ gun.
The Gaussian bunch is shown qualitatively.

One can observe that the wake potential does not vanish
for an infinitely smooth tapering. This is easily explained
by an energy consideration. Before passing the step or the
taper, the fields of the bunch have an energy density which
gives an amount of energy being stored in the inner tube of
the coupler antenna. Far behind the step or the taper, the
amount of energy stored in the beam tube is larger because
the radius and hence the volume is larger. The difference
of these energies corresponds exactly to the loss of energy
of the bunch. Tapering reduces the impact on the bunch but
it cannot switch off any effect of a change in the radius.

In a different approach the wake potential for an in-
finitely small angle can be calculated analytically. One has
to carry out the integration of the electromagnetic fields of
the bunch along a radial path
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lim
α→0

W||(s, α) = −1
q

∫
C

(Er + c0Bφ) dr

=
1

πε0
ln

(
rinitial

rfinal

)
λ(s). (4)

The wake potential has the same shape as the charge dis-
tribution λ(s) which is nearly fulfilled by the graph cor-
responding to a tapering angle of 4◦ in Fig. 6. Further-
more equation 4 shows an agreement to the additive term
derived in [10]. This term arises by changing from total
to scattered fields in the integration of the wake potential.
Thus, demanding the solution of the same integral as in
equation 4.

Collimator

The last simulation deals with a collimator. It is circular
cylindrical symmetric but it is not symmetric in the lon-
gitudinal direction, i.e. the incoming angle α = 3.18◦ is
slightly different from the outgoing angle β = 2.86◦. The
two radii are R = 0.01 m and r = 0.005 m.

Figure 7: Sketch of the collimator

The σ of the Gaussian bunch is 0.5 mm and the bunch
charge is again q = 1 nC. The results of ECHO and RO-
COCO are compared. Using comparable resolutions as
mentioned above one obtains Fig. 8.
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Figure 8: Wake potential of the collimator shown in Fig. 7.
Results from ECHO and ROCOCO are compared. The
Gaussian bunch is shown qualitatively.

The result of ROCOCO gives a quite good agreement
for the far range wake potential compared to ECHO’s re-
sult. Obviously the near range wake potential given by
ROCOCO and ECHO show deviations. The discrepancy
of the two results is still a point of ongoing investigations.

CONCLUSIONS

In this paper an algorithm is described which allows for
low dispersive simulations along one direction in a rotated
mesh. The excitation of the fields is implemented by a scat-
tered fields approach. Due to a moving window technique
wake potentials of various long structures and discontinu-
ities can be computed. An accumulation of dispersion er-
rors is not observed. Realistic structures such as a step in
the PITZ gun or a collimator have been investigated.

However, there are some minor differences in the result
for the collimator. ROCOCO’s and ECHO’s result do not
match in the near range wake potential. The reason for that
is an object of further work to do.
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