
A Space Charge Algorithm for the Bunches of Elliptical Crossection with
Arbitrary Beam Size and Particle Distribution

A. Orzhekhovskaya, G. Franchetti, GSI, Darmstadt, Germany

Abstract

A general and precise method for calculating the electric
field generated by an bunch with variable elliptical cross
section is proposed. The particle distribution is fitted by
a polynom of a proper degree. Field calculations by Kel-
log’s formulae are made for this polynomial expansion. For
an arbitrary 2D elliptic cross section of the bunch the ana-
lytic solution with hypergeometric function is derived. For
a bunch with variable elliptical cross section we propose
numerical methods. The high accuracy of these methods is
benchmarked.

INTRODUCTION

The present work has been done in the frame of space
charge modeling of high intensity beam for the new Fa-
cility for Antiproton and Ion Research (FAIR) in GSI [1].
Two new synchrotrons: SIS100 and SIS300 will be con-
structed and extend the chain of the existing accelerators,
UNILAC and SIS18. The SIS100 scenario [1] foresees a
beam loss control during a long term storage of 105 turns.
However, space charge jointly with lattice nonlinearities
has been proved dangerous for emittance growth and beam
loss [2]. The effect of the space charge modeling on long
term tracking is particularly challenging because of the arti-
ficial noise in the electric field deriving from standard Pois-
son solvers. For this reason an analytic model of the space
charge for a bunched beam is developed. This model was
also used in linac code benchmarking for the static compar-
ison of different codes in frame of High Intencity Pulsed
Proton Injector (HIPPI) project [3,4].
We restrict the modeling to the bunches with ellipsoidal
symmetry, where the charge distribution is given by

ρ(x, y, z) =
Q

4πabc
n̂(t), (1)

t =
x2

a2
+

y2

b2
+

z2

c2
,

where Q is the total charge of the bunch, a, b, c are the
bunch axis and t is the isodensity parameter. Function n̂(t)
is normalized to ∫ ∞

0

n̂(t)dt = 1.

The following general formula for the electric field created
by 3D ellipsoidal bunch is derived in [5]

Ex =
Qx

2

∫ ∞

0

n̂(T̂ )ds

(a2 + s)3/2(b2 + s)1/2(c2 + s)1/2
, (2)

with

T̂ =
x2

a2 + s
+

y2

b2 + s
+

z2

c2 + s
.

We consider the distribution n̂(t) on the interval [0, Tmax]
so to describe all the physical space where a particle may be
found during storage. The choice of Tmax follows from the
rms beam sizes and the beam pipe so Tmax ∼ (xpipe/a)2.
For standard scenarios the pipe is approximately 10 times
larger than the rms size of the beam, this yields Tmax ∼
100. The quantities a, b, c in Eq. 1 and Eq. 2 are the rms
sizes of the bunched beam. For distribution n̂(t) of poly-
nomial form

n̂(t) =
N∑

l=0

clt
l (3)

the electric field for 3D ellipsoidal bunch can be derived by
substituting Eq. 3 into Eq. 2 [6]

Ex = Qx
2

∑N
l=0 cl

∑
i+j+k=l

l!
i!j!k! Ii+1,j,kx2iy2jz2k,

(4)
where

Ii,j,k =
∫ ∞

0

dt

(a2 + t)0.5+i(b2 + t)0.5+j(c2 + t)0.5+k
.

(5)
The integrals Ii,j,k are constants if the particle has isoden-
sity parameter t < Tmax. We can interpolate any arbi-
trary distribution n̂(t) on interval [0, Tmax] by a polyno-
mial function n̂p(t) of certain order N . The coefficients
c0, ..., cN of polynom Eq. 3 are defined by N + 1 Cheby-
shev nodes

tk = Tmax

{
1
2

+
1
2

cos
[
(2k + 1)π
2N + 2

]}
,

k = 0, .., N.

The obtained Lagrange polynom has the smallest maximal
absolute error

M = maxt∈[0,Tmax]|n̂(t) − n̂p(t)|

in the class of polynoms of order N [7]. The optimal
order of polynom N is chosen by calculating the depen-
dence of M from N for every distribution n̂(t) and interval
[0, Tmax]. For example, for a Gaussian distribution on the
interval [0,100] the optimal order of the interpolating poly-
nom is N = 22 [6].
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ACCURACY OF SOLUTION FOR 3D
ELLIPSOIDAL BUNCH

In [6] it was proposed to calculate functions Ii,j,k (Eq. 5)
numerically by using Gauss Quadrature for 96 points. By
comparison with Gauss Quadrature for 80 points it was
found that the relative error in calculating Ii,j,k is

|I(96)
i,j,k − I

(80)
i,j,k|

I
(96)
i,j,k

< 10−5.

Now we apply the Lobatto method [8] for calculating Eq. 5
up to a given absolute accuracy. Let ILob

i,j,k be the value
of Ii,j,k computed with Lobatto method with fixed accu-
racy 10−15; IGauss

i,j,k is value of Ii,j,k computed by Gauss
Quadrature for 96 points. The relative error

M =
|ILob

i,j,k − IGauss
i,j,k |

ILob
i,j,k

< 10−5

for all i, j, k, where i+j+k < N+1 and N = 22, confirms
the estimation of error found in [6]. The errors in interpo-
lation |n̂(t) − n̂p(t)| and in the calculation of Ii,j,k lead to
a further error in Eq. 4. To estimate this influence we ap-
ply Lobatto method with accuracy 10−15 to compute the
integral Eq. 2 for Gaussian distribution n̂(t) = e−t. Then
we interpolate this distribution on the interval [0, Tmax] by
the polynom n̂p(t) and compare ELob

x with Ex computed
by Eq. 4. This test has been done for 106 random test par-
ticles uniformly distributed on the interval [0, Tmax] with
|x| < 10a, |y| < 10b, and |z| < 3c. Fig.1 shows the

10
-15

10
-12

10
-9

10
-6

10
-3

1

0 30 60 90 120 150

Ere

Erp

Tmax

E
rr

or

Figure 1: Dependence of maximum relative error of field
calculation Ere and maximum absulute error of distribu-
tion interpolation Erp on the length of interval [0, Tmax]
for a = 0.001, b = 0.01, c = 10.

dependence of maximum relative error

Ere = max(x,y,z),t∈[0,Tmax]
|ELob

x − Ex|
ELob

x

and maximum absolute error of interpolation

Erp = max(x,y,z),t∈[0,Tmax]|n̂(t) − n̂p(t)|
on Tmax ∈ [10, 150].

SOLUTION FOR 3D BUNCH OF
VARIABLE ELLIPTICAL CROSSECTION

Until now we have considered charge distributions of type
as in Eq. 1 with fixed sizes a, b, c. This type of distribu-
tions can be matched with a constant 3D focusing chan-
nel. In order to take into account the AG structure of a real
ring we consider the long bunch ansatz: for a sufficiently
long bunch the transverse force is given by the local slice
of bunch which resemble a piece of a coasting beam. We
change Eq. 1 with

ρ =
λ(z)

4πa(z)b(z)
n̂

(
x2

a2(z)
+

y2

b2(z)

)
, (6)

where λ(z) is the local longitudinal charge density, a(z)
and b(z) are the local transverse beam axis given by

a(z) =
√

εxβx(z), b(z) =
√

εyβy(z). (7)

Note that Eqs. 6, 7 are applied for transverse matched
beams. As in rings the functions βx(z) and βy(z) are pe-
riodic, we restrict the study to z ∈ [0, P ], where P is the
length of one period. For each fixed z we have a 2D ellipse
cross section with the particle distribution n̂(t), where

t =
x2

a2(z)
+

y2

b2(z)
.

The function n̂(t) is interpolated by the polynom n̂p(t) of
order N on the interval [0, Tmax]. For 2D elliptic beam
Kellog’s formula Eq. 2 becomes

Ex =
λ(z)

2
x

N∑
l=0

cl

∑
i+j=l

l!
i!j!

Ii+1,j(z)x2iy2j , (8)

where

Ii,j(z) =
∫ ∞

0

1
[a2(z) + t]1/2+i[b2(z) + t]1/2+j

dt.

For each z ∈ [0, P ] and integer i, j we compute a(z), b(z)
and then Ii,j(z) by using hypergeomertic function. How-
ever for large amount of particles this procedure is time
consuming. In order to reduce the computational time for
Ii,j(z) we build a grid in z with ino nodes on the inter-
val [0, P ]. The functions Ii,j(z) are previously computed
for every i, j in grid nodes zk, k = 0, ..., ino. Then they
are interpolated at any arbitrary z. The choice of the inter-
polating method and number of nodes should be discussed
additionally. The algorithm for computing the 3D electric
field for an arbitrary particle (x′, y′, z′) is following:

1. Initialization (is done once for all particles).
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1.1 Choice of interpolation nodes zk, k = 0, ..., ino.
1.2 Calculation of βx(zk), βy(zk) for any k = 0, ..., ino.
1.3 Calculation of correspondenta(zk), b(zk) with Eq. 7.
1.4 Calculation of Ii,j(zk) for any i, j, such that i + j ≤

N +1, in ino+1 nodes using the hypergeometric function:
if a(zk) > b(zk), then

Ii,j = 2F1(0.5 + i, i + j, 1 + i + j, 1 − b2(zk)/a2(zk))
(i + j)a(zk)2i+2j

,

if a(zk) ≤ b(zk), then

Ii,j = 2F1(0.5 + i, i + j, 1 + i + j, 1 − a2(zk)/b2(zk))
(i + j)b(zk)2i+2j

,

where

2F1(l, m, n, k) = 1 +
lm

1!n
k +

l(l + 1)m(m + 1)
2!n(n + 1)

k2 + ...

2. Calculation of Ex for an arbitrary particle (x, y, z).
2.1 Calculation of Ii,j(z) for any i, j, such that i + j ≤

N + 1, using interpolating method.
2.2 Calculation of the electric field Ex for 2D case using

Eq. 8.

APPLICATION TO SIS18

In the case of SIS18 the functions βx(z), βy(z) have a pe-
riod P = 18 m. We use the linear interpolation for comput-
ing Ii,j(z). The value of Ii,j(z) with z between the nodes
zk and zk+1 is computed as

Iinterp
i,j = Ii,j(z) = Ii,j(zk)+

+
z − zk

zk+1 − zk
[Ii,j(zk+1) − Ii,j(zk)].

For 300 equidistant longitudinal nodes the linear interpola-
tion gives a maximum relative error |Ii,j − Iinterp

i,j |/Ii,j of
10−8 (the number of nodes was chosen doing few tests).

APPLICATION TO SIS100

In the case of SIS100 the period of βx(z), βy(z) is of
P = 180.6 m (status 2006). The presented calculations
and tests have been done for P = 198.6 m (status 2005),
but preliminary check for the new parameters shows that
no remarkable difference in accuracy is expected. Func-
tions Ii,j(z) has big oscillations: the maximum variation
of Ii,j(z) for i, j > 10 is up to 1010. In this condition
the linear interpolation doesn’t give good approximation.
Therefore we use a quadratic interpolation. We interpolate
Ii,j(z) for certain z inside 1-st period of βx(z), βy(z): let
zk be the closest node to z, then Ii,j(z) is obtained from

c1 = zk−1, c2 = zk, c3 = zk+1,

d1 = Ii,j(zk−1), d2 = Ii,j(zk), d3 = Ii,j(zk+1),

Ii,j(z) =
(z − c2)(z − c3)

(c1 − c2)(c1 − c3)
d1+

+
(z − c1)(z − c3)

(c2 − c1)(c2 − c3)
d2 +

(z − c1)(z − c2)
(c3 − c1)(c3 − c2)

d3.

The optimal number of equidistant nodes ino = 5000 was
chosen with few tests in order to make smaller the relative
error of Ii,j in z ∈ [0, P ]

M(z) = max
i+j<N+1

|Ireal
i,j (z) − Iinterpol

i,j (z)|
Ireal
i,j (z)

.

As shown on Fig.2, for 105 random values of z ∈ [0, P ]
and for all i, j, such that i + j ≤ N + 1 = 23, the error
M(z) is less than 2.24 × 10−3 and for most of tested z-
values M(z) < 10−4.
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Figure 2: Maximum relative error M(z) of Ii,j(z) calcula-
tion on one SIS100 period

BENCHMARKING FOR SIS100

1. We repeat the test described in [6] with Gauss law

�∇ �E(x, y, z) = 4πρ(x, y, z) (9)

to the method for calculating Ex, Ey to SIS18 and SIS100.
We fix the logitudinal position z ∈ [0, P ]. In this 2D ellipse
cross section we interpolate Gaussian distribution n̂(t) =
e−t by the polynom n̂p(t) on interval [0, Tmax] and take a
set of 103 test particles (x, y) with

t =
x2

a2(z)
+

y2

b2(z)
< Tmax.

For each particle we calculate Ex and Ey . Then from Eq. 6
and Eq. 9 we reconstruct distribution function n̂rec(t) and
compare it with the interpolating polynom n̂p(t). For 103

test values of z ∈ [0, P ] the reconstruction error

M(z) = max
0<t<Tmax

|n̂p(t) − n̂rec(t)|
n̂p(t)

is less than 10−3.
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2. In this test we fix the longitudinal position z = 0 and
study the case of an axisymmetric beam (a(z) = b(z)).
Locally we can consider this bunch as a piece of coasting
beam. The analytical value of the electric field is [9]

Eanalyt =
λ(0)
4πε0r

(1 − e−r2/2a2
).

We compute Ex, Ey and calculate E =
√

E2
x + E2

y . For

the set of 104 test particles uniformly chosen and satisfying
t < Tmax = 150 the relative error is

|Eanalyt − E|
Eanalyt

< 10−5.

3. We substitute Ex, Ey into the analytical formulae for
Ex, Ey in the case of small x, y. As x, y are close to zero
the following equation is found

Ex(x, y, z) =
λ(z)b(z)x

ε0[a(z) + b(z)]
+ O(x). (10)

From Eq. 10 and the similar equation for Ey(x, y, z) we
find

yEx

xEy
=

b(z)
a(z)

.

For 105 test particles x ∼ y ∼ 0 close to the longitudinal
axis this equation holds with the relative error 10−5.

4. In this test we compare 2 methods of calculation of
the electric field: for 3D ellipsoidal bunch with rms sizes
a, b, c and for a bunch with variable transverse elliptical
crossection. When c � a we can consider the ellip-
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Figure 3: Variation D of ratio E3D
x (x, y, z)/EAG

x (x, y, z)
for |z| < 3c and different values of c/a

soidal bunch locally as a piece of coasting beam. Then
we can use the method for 3D ellipsoidal bunch and cal-
culate E3D

x (x, y, z) for an arbitrary particle. Alternatively,

we can use the method for the bunches of variable ellip-
tical crossection with βx(z), βy(z) = const and compute
EAG

x (x, y, z). In the condition c/a → ∞
E3D

x (x, y, z) = EAG
x (x, y, z). (11)

We now test if Eq. 11 holds for a finite aspect ratio c/a.
Fig.3 shows the variation

D = max
(x,y,z)

E3D
x (x, y, z)

EAG
x (x, y, z)

− min
(x,y,z)

E3D
x (x, y, z)

EAG
x (x, y, z)

for 104 random test particles (x, y, z) with |z| < 3c and for
different aspect ratio. For example for c/a > 103 (as it is
in SIS100) we found D < 10−5.

CONCLUSION

A general and precise method for calculating the electric
field in the case of an ellipsoidal bunch and a bunch of vari-
able elliptical crossection is proposed. The arbitrary space
charge distribution n̂(t) is fitted on the interval [0, Tmax],
with Tmax = 100 by the polynom of optimal order N us-
ing Chebyshev nodes. For Gaussian distribution N = 22.
The electric field is calculatated for this polynomial expan-
sion, that makes the general formulae for the electric field
simple. Special functions Ii,j have to be calculated only
once that allows to increase the speed of calculations. For
the bunch of variable elliptical cross section we propose a
numerical method which uses longitudinal grid. The main
part of the methods with the highest CPU consumption is
done ones for all particle. The computer libraries with im-
plemented these methods are included into MICROMAP
library [10]. The tests of these methods demonstrate their
high accuracy. Speed estimation shows benefits at least in
10 times for proposed method against Lobatto algorithm.
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