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Abstract 
The frequency analysis of the betatron motion is a 

valuable tool for the characterization of the linear and 
non-linear motion of a particle beam in a storage ring. In 
recent years, several experiments have shown that 
resonance driving terms can be successfully measured 
from the spectral decomposition of the turn-by-turn BPM 
data. The information on the driving terms can be used to 
correct unwanted resonances, to localize strong non-linear 
perturbations and provides a valuable tool for the 
construction of the non-linear model of the real 
accelerator. In this paper we introduce the theory, the 
computational tools and we give a review of the 
resonance driving terms experiments performed on 
different circular machines. 

 

INTRODUCTION 
The characterization of the non-linear single particle 

dynamics in a circular accelerator by means of the 
frequency analysis of the betatron motion has been 
investigated by several authors since the eighties. Early 
attempts by Ando [1] and Bengtsson [2] already provided 
the basic idea of the technique, namely, the comparison 
between the beam orbits obtained by numerical tracking 
or measured at a BPM, with the analytic expression of the 
betatron oscillations in presence of non-linear resonance 
driving term in the Hamiltonian of motion. In particular, 
Bengtsson [2] provided a classification of the frequency 
lines present in the spectrum of the betatron oscillations 
as the result of well defined resonance driving term in the 
Hamiltonian to the first perturbative order. Bengtsson’s 
work benefited from numerical techniques conceived to 
improve the precision of the FFT in the determination of 
the frequencies of the spectral lines devised by Asseo [3]. 
Bengtsson’s approach is based on the perturbative 
analysis of Hamiltonian flows in the single resonance 
approximation (Poincare–Von Ziepel procedure): only the 
largest Fourier component of a single resonance driving 
term is considered in the Hamiltonian, therefore the 
information on the s-dependence of the driving term is 
lost. Furthermore the use of Hamiltonian flows renders 
very cumbersome the extension of the theory to higher 
order. The topic was revisited from a Normal Form map 
perspective by Bartolini and Schmidt [4] which provided 
explicit analytical expressions of the orbit and devised a 
procedure to establish a one-to-one correspondence 
between spectral lines and resonance driving terms based 
on a order by order procedure to clearing the data from 
the contribution of lower order driving terms. The work of 
Bartolini and Schmidt used extensively an improved 

algorithm for the frequency analysis of the betatron orbits 
[5, 6] based on the Laskar’s NAFF algorithm [7] for the 
decomposition of a quasi-periodic signal into its discrete 
frequency components. More recently Tomas [8] has 
extended the theory by clarifying how the spectral line 
reflects the variation of the resonance driving term along 
the ring, thus allows the localization of multipolar errors 
in the ring. 

In parallel with the development of the theory, many 
experiments have been carried out to test the applicability 
of this technique to real experimental data. The first 
extensive campaign of measurements aimed at the 
detection of resonance driving term from the frequency 
analysis of excited betatron oscillations was performed at 
the CERN-SPS in the late nineties [9]. Since then, several 
experiment undertaken on many different machines have 
demonstrated that spectral lines excited by resonance 
driving term can be identified, their amplitude 
dependence and their s-dependence can be assessed and 
compared with what is expected from the machine model. 
This provides a valuable tool to correct unwanted 
resonance, localize multipolar errors and in general to 
gain a better insight into beam dynamics of a circular 
accelerator.  

Recently, further efforts have been made towards the 
use of this technique to calibrate the non-linear model of 
the machine and possibly correct the non-linear beam 
dynamics by compensating the non-linear field errors 
distributed in the ring. These applications have been 
proved only on tracking data [10] and still lack a full 
experimental verification. However, if proved successful, 
the frequency analysis of the betatron motion will provide 
a valuable tool complementary to LOCO [11] and the 
FMA [12] to help building a realistic on-line non-linear 
model of the ring. 

THEORETICAL BACKGROUND 
The betatron motion of a charged particle in a circular 

accelerator is determined by the sequence of linear and 
non-linear magnetic elements that constitute the lattice of 
the ring. The motion of the charged particles can be 
equivalently described in terms of Hamiltonian flows [13] 
or symplectic one turn maps [14]. This is true as far as 
collective or dissipative terms are neglected, in particular, 
in electron machines, one neglects dissipative and 
quantum effects due to the emission of synchrotron 
radiation. 

As for any non-linear Hamiltonian system, the motion 
of a charged particle can be characterized in terms of 
regular and chaotic orbits. Regular orbits can be stable or 
unstable: the motion on regular stable orbits is quasi-
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periodic and can be decomposed in a series of harmonic 
spectral lines with discrete frequencies [15]: 
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The frequencies νk are linear combinations of the betatron 
tunes νx in the horizontal and νy in the vertical plane. The 
amplitude of the spectral lines decreases rapidly 
(exponentially if the Hamiltonian is analytic) with the 
order of the linear combination of the betatron tunes, 
therefore the decomposition will contain effectively only 
a limited number of spectral lines. For chaotic orbits this 
decomposition breaks down and a broad continuous set of 
frequencies will be excited in the spectrum. 

While the motion in the linear element of the ring is 
integrable and can be described in terms of Courant-
Snyder variables as rotations on circles in the phase 
space, the non-linear motion of a charged particle in a 
ring is generally non-integrable. However, perturbative 
approaches can be used to analyze the non-linear motion 
and extract useful semi-analytical dynamical quantities to 
characterize and control the particle dynamics. The 
perturbative parameter is typically the gradient of the 
non-linear element in the Hamiltonian flows or the 
amplitude from the origin in the map formalism.  

In the non-resonant Normal Form approach the one turn 
map M is conjugated towards a simpler map U that 
depends only on the action variables but not on the 
angles. The conjugation is performed with a symplectic 
change of variables Φ according to the scheme in Fig. 1: 

 
Fig. 1: Schematic of the transformation of the one turn 

map M into its Normal Form U. 
 
The transformation Φ and the Normal Form map U can 

be expressed as a Lie series with generating function F 
and Hamiltonian H respectively according to 

 
 ::Fe=Φ  ::HeU =  
 
The generating function F and the Hamiltonian H can 

be written as a sum of homogeneous polynomials in the ζ 
variables, e.g. 
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where Fk is a polynomial of order k.  

The coefficient fjklm of the generating function are 
related to the coefficient hjklm of the Hamiltonian by: 
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and the hjklm are the resonance driving terms which are 

determined by the distribution of magnetic elements along 
the ring, e.g. the coefficients h3000, h1020, h1002 are all 
proportional to the sextupoles strength and are responsible 
for the excitation of the third order resonances (3,0), (1,2), 
(1,-2) respectively. 

The motion in the normalized coordinate given by the 
map U is trivial since it is an amplitude dependent 
rotation; therefore after N turns we have,  

 

 )2( 02)( xxNi
xx eIN ψπνς +=  

 
where Ix is the horizontal action, ψx0  is the horizontal 
initial phases. An analogous expression is valid for the 
vertical plane. 

To derive the motion in the original coordinate x we 
have to transform back the orbit from the ζ variable to the 
x variables with the transformation Φ. To the first 
perturbative order in the amplitude, the expression for the 
beam oscillation in Courant-Snyder variable, e.g. in the 
horizontal plane, can be cast in the form: 
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This expression can be directly compared with the 

frequency decomposition of a quasi-periodic signal and 
the values of the coefficients fjklm at a given BPM can be 
obtained from the spectral decomposition of the betatron 
oscillation signal using an enhanced FFT algorithm such 
as those developed in the SUSSIX [6] or NAFF [7] codes. 
The rule relating the resonance (m, n) to the spectral line 
{m’, n’} is quite simple and reads 
 

• horizontal plane { –n + 1, –m } 
• vertical plane { –n, –m + 1 } 

 
or in terms of the indices of the resonance driving term 
hjklm we have: 
 

• horizontal plane { 1 – j + k, m – l } 
• vertical plane { k – j, 1 – 1 + m } 

 
therefore, as an example, the resonance driving term of 
the (3, 0) resonance, h3000, will appear in the amplitude of 
the {–2, 0} spectral line in the horizontal plane. 
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The detection of the spectral lines provides therefore 
information on the resonance driving terms that are 
relevant in the particle motion and allows the 
measurement and the correction of their effect.  

Bartolini and Schmidt [4] showed that a one to one 
correspondence between spectral line and resonance 
driving terms can be built by using an order by order 
procedure, where the order of the parameter is the power 
in the amplitude dependence of the spectral lines. In 
general, a given spectral line is fed by different multipoles 
at different orders, and therefore the amplitude and phase 
of the spectral lines is the result of the complex vector 
sum of all the different contributions. As an example, the 
(4, 0) resonance, i.e. the {–3 , 0} spectral line, gets 
contributions from the octupoles in first order, via the F4 
polynomial of order 4 in the generating function and from 
the sextupoles in second order via F3. However these 
contributions have different amplitude dependences and 
the F3 contribution to the spectral lines can be completely 
removed once the F3 terms have been determined by the 
analysis of the {–2, 0}, {0, ±2} and {0,0}. In fact, the 
knowledge of F3 can be used to transform the tracking 
data or the beam data to remove all F3 contributions at 
any order in the amplitude with dedicated software 
program such as DaLie [16]. As a result the new data will 
be free of third order resonances and the fourth order 
resonances will have only the residual contribution of F4. 
In this way the determination of the spectral lines excited 
at different order in the amplitude gives in principle the 
possibility to recover the terms in the one turn map to any 
given order. 

Another interesting application of the frequency 
analysis of the betatron motion consists in the localization 
of non-linear multipolar errors. Tomas [8] has shown that 
the generating function coefficients fjklm vary along the 
ring whenever a multipole is met. This behaviour is 
reflected in corresponding variation of the amplitude and 
phase of the spectral line with the s-position along the 
ring and therefore it can be used to localize the s-position 
of a multipolar kick. The variation of a resonance driving 
term in presence of a multipolar kick can be easily 
understood by considering the contribution of each single 
multipole to the driving term itself. If we consider the 
resonance driving term hjklm before and after the multipole 
kick, we realize that the total driving term can be 
represented as a vector in the complex plane which is 
made up of two contributions: the contribution of the 
single multipole kick κjklm and the contribution of the rest 
of the machine λjklm (see Fig. 2). Before the multipole, the 
complex vector of the total driving term is the vector sum 
of κjklm + λjklm while after the multipole it is the sum of 
λjklm + κjklm ⋅ exp(–2πi[(j–k)νx + (l–m)νz] where the 
contribution of the multipole, appearing at the end of the 
ring, is multiplied by the resonant phase advance. 

Applying the decomposition to all BPMs in the ring 
allows the reconstruction of the whole s-dependence of 
the driving term. This feature is very important since it 
allows the localization of an unwanted multipolar kick. It 
is interesting to note that, if the machine tunes are exactly 

on resonance, the driving term will not change, therefore 
the spectral lines will not change and it will not be 
possible to localize the multipolar kick. Therefore this 
technique works best when the tunes are not close to the 
resonance we want to analyze. 

 
Fig. 2: Addition of complex contribution to the 

resonance driving term before a) and after b) a single 
multipole: the contribution of the single multipole (black) 
appears rotated by the resonant phase advance φ = 2π[(j–
k)νx + (l–m)νz]. The contribution of the rest of the 
machine (blue) is unchanged and the total driving term 
(red) changes according to the location of the multipolar 
kick. 

LIMITS OF THE TECHNIQUES 
The technique outlined has its limits. The precision of 

the frequency decomposition of the signal will be reduced 
in presence of noise in the BPMs [17] or any other noise 
source. Nowadays, however, the BPM precision can reach 
10 µm rms with few tens of mA bunch trains. BPMs gain, 
and non-linearities will also affect the precision of the 
method. The effect of the BPMs gain can be avoided by 
normalizing the amplitude of the spectral lines to the tune 
line. The non-linearities in the BPMs response induced by 
the geometry of the BPM block in the vacuum chamber 
will modify the measured oscillation especially when 
considering large oscillations. Bi-dimensional maps that 
correct the BPM reading (xbpm, ybpm) to the real (x, y) 
position in the aperture have to be computed to overcome 
this effect [18]. 

Another serious limitation is given by the natural 
decoherence of the betatron oscillations due to the finite 
size of the bunch and to the amplitude dependent 
tuneshift. The betatron oscillations excited after the kick 
will damp after a number of turns that depends on the 
amplitude dependent tuneshift and the bunch density 
distribution (typically much shorter than the damping 
time for electron machines). In some cases only a few 
hundred turns might be available. Tomas [8] has 
demonstrated that the amplitude of the spectral lines 
excited by a resonance of order m will decohere m – 1 
times faster than the main tune line. A decoherence factor 
of (m-1) should be applied to the amplitude spectral line. 
An alternative solution is provided by the use of a non-
destructive continuous excitation of betatron oscillation 
with an AC dipole: in this case the decoherence issues are 
virtually eliminated [19].  

Another possible source of errors comes from the 
reconstruction of the particle momentum with two BPMs 
when the two BPMs are distant and many non-linear 
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elements are present between them. Obviously the 
distribution of the BPM in the ring is fixed and in general 
the contribution to a resonance driving term given by two 
multipole of the same order, with no BPM in between, 
cannot be distinguished. Only the sum of the complex 
vector sum of the two multipolar kicks can be detected. 

EXPERIMENTS 
After the first pioneering experiment at CERN-LEAR 

[20] the first campaign of measurement specifically 
dedicate to the detection and characterization of the 
resonance driving terms was performed at the CERN-SPS 
between 1999 and 2002 [9, 21-23]. In the first experiment 
the spectral line {-2, 0} excited by the (3, 0) resonance 
driving term h3000, was detected and its amplitude 
dependence at one BPM was found in a reasonably good 
agreement with the model as shown in Fig. 3. 

 
Fig. 3: Amplitude of the {–2, 0} spectral line excited by 
the (3, 0) resonance as a function of the amplitude of the 
induced betatron oscillation and comparison with the 
model [9]. 
 

In subsequent experiments the work has concentrated 
on the analysis of the s-dependence of the driving term 
using the CERN-SPS in especially dedicated 
configurations where the polarity of the eight extraction 
sextupoles was varied to enhance or reduce the sextupoles 
induced driving terms. Fig. 4 shows the s-dependence of 
the {– 2, 0} spectral line along the ring and a comparison 
between tracking data and measured data. One sextupole 
was forcefully disconnected to investigate the difference 
in the spectrum lines pattern. The location of the eight 
extraction sextupole is clearly put in evidence by the 
abrupt steps in amplitude of the spectral line. The 
agreement between the amplitude of the measured 
spectral line and the tracking data is significantly 
improved in the bottom graph where the model took into 
account the disconnected sextupole. 

In 2003-2004 [24, 25] similar experiments were 
performed at RHIC. The first measurements based on the 
beam excitation with an AC dipole were compared with 
the results obtained with kicked beam and with the model, 
showing the potentiality of the AC dipoles [19]. 
Furthermore, a combination of the signals taken at three 
consecutive BPMs was devised to single out the 
contribution to the resonance driving terms generated 

only by the multipoles present between the selected 
BPMs. An example of the “three BPMs method” [ 25 ] 
providing the measurement of the local contribution from 
sextupoles to the (3,0) resonance driving terms with an 
AC dipole is reported in Fig. 5, with the comparison with 
RHIC tacking data. 

 

 
Fig. 4: Amplitude of the {– 2, 0} spectral line as a 
function of the position along the ring. Comparison with 
the tracking data for the case where all the eight 
sextupoles are powered in the model (top) or the first 
sextupole is disconnected in the model (bottom) [22] 
(courtesy F. Schmidt). 

 
Fig. 5: Local contribution to the resonance driving terms 
measured with an AC dipole. The top plot shows the β-
beating and the bottom plot shows the sextupolar 
component of the ring [25] (courtesy R. Tomas). 
 

The possibility of correcting unwanted resonances with 
the direct measurement of resonance driving terms was 
demonstrated in a series of experiments made at CERN-
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PS in 2004 [26]. Targeting specifically the systematic 
skew resonance 3Qy =16 appearing as the {0, –2} spectral 
line in the vertical plane, by means of a two independent 
skew sextupoles, it was possible to reduce the resonance 
driving terms directly from the observation of the spectral 
line. The vertical phase space plot, before and after 
correction, is reported in Fig. 6. It is evident that, when 
the resonance is compensated, the phase space is free 
from the deformation due to the (0, 3) resonance. The 
analysis of the resonance content of the CERN-PS, based 
on the spectral lines, showed that an alternative working 
point with a vertical integer tune lower by one unit is 
preferable to the one used in standard operation. 

 

 
Fig. 6: Normalized vertical phase space of the 

uncompensated (top) and compensated (bottom) lattice 
for the CERN-PS [26] (courtesy P. Urschutz). 

 
In the last years, several other machines have attempted 

an experimental analysis of the resonance driving terms 
excited in their ring: in particular Tevatron [27], ALS 
[28], ESRF [29], BESSY-II [30].  

At the Tevatron and ALS the experiments were again 
devoted to the identification of the spectral lines of the 
main resonance along the ring. At the Tevatron, a strong 
contribution to the (3, 0) resonance driving term from the 
sextupole family S6 was put into evidence. In Fig. 7 we 
report a comparison of the {–2, 0} line measured at the 
Tevatron and a comparison with tracking data. The 
spectral line analysis allowed the partial compensation of 
this effect with an independent sextupole (S6A0). The 
experiments performed at the ESRF and BESSY-II put in 
evidence the possibility of measuring also higher order 
resonance driving terms. At BESSY-II it was possible to 
detect the spectral line {–3, 0} in the vertical plane 
excited by the 4th order skew resonance (3, 1) and to 

verify the correct dependence of the spectral line 
amplitude with the amplitude of the induced betatron 
oscillations. According to formula (1), the amplitude of 
the {–3, 0} vertical spectral line should grow with the 3rd 
power of the horizontal oscillation amplitude. Indeed, Fig. 
8 shows a linear relation between the amplitude of the {–
3, 0} line and the cube of the kicker voltage. 

 

 
Fig. 7: Tevatron data: sextupole spectral line {–2, 0} as 

a function of the pick up number with S6A sextupole on 
(red) and off (green). Experimental data (top) tracking 
data (bottom). The azimuthal position of the BPMs is 
shifted in the two graphs, however the location of the S6 
sextupoles is explicitly marked [27] (courtesy Y. 
Alexhain). 

 
Fig. 8: Amplitude of the {–3, 0} line as a function of 

the cube of the kicker voltage measured at BESSY-II 
(courtesy P. Kuske). 

NON-LINEAR MODEL CALIBRATION 
The experimental results presented show that the 

spectral analysis of turn-by-turn data provides a wealth of 
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information on the non-linear beam dynamics. It is 
therefore natural to envisage the possibility of using this 
technique to obtain a realistic modelization of the non-
linear part of the ring directly from the turn-by-turn data 
acquired at all BPMs in the ring. 

A possible schemes was devised in Ref. [10] and it is 
based on the fitting the non-linear multipole strength 
along the ring to reproduce the s-dependence of selected 
spectral lines. Given a particular resonance whose s-
dependence pattern differs significantly from what 
expected from the model, one can build a target vector 
Ameas, whose components are the amplitude and phase of 
the spectral lines computed at each BPM, and compare it 
with the same target vector computed from the ideal 
model Amodel. The components of the target vector will 
depend on the value of the particular multipolar elements 
that excite the corresponding resonances. If the resonance 
(3,0) is targeted, then the target vector to use is given by 
the amplitude and phase of the spectral line {–2, 0} which 
is excited by the sextupoles in the ring: 
 
 ),...,;,...,( 11
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where Nbpm is the total number of BPMs in the ring. The 
distance between the two vectors Ameas and Amodel, e.g. 
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gives a measure of the discrepancy between the real 
accelerator and the model. This quantity can be 
minimized by a least square minimization procedure that 
involves fitting the strength of the magnetic elements 
directly responsible for the excitation of that particular 
spectral line. Fig. 9 shows an example of the application 
of this technique to Diamond tracking data. 

 
Fig. 9:  Comparison of spectral lines {-2,0} from tracking 
data for the Diamond lattice with sextupole strength 
errors: top) ideal lattice (blue) and uncorrected lattice 
(red); bottom) ideal lattice (blue) and compensated lattice 
(red): the two amplitudes are practically indistinguishable. 

A MATLAB numerical code was generated to produce the 
fit and reconstruct the errors [31]. It is worth mentioning 
that this method works equally well in the modelisation of 
the linear part of the ring: the linear optic is inferred from 
the amplitude of the tune lines, fitting the quadrupoles 
strengths, and the linear coupling is inferred by targeting 
the {0, 1} spectral line in the horizontal plane and the {1, 
0} line in the vertical plane, fitting the skew quadrupoles 
in the ring. This method has been successfully applied to 
tracking data where it reproduced the resonance driving 
term accurately. However, its effectiveness in dealing 
with real machine data has still to be proven. 

CONCLUSIONS 
The identification of the resonance driving terms with the 
frequency analysis of the betatron motion is a well 
understood topic. The pioneering experiments at CERN 
have demonstrated that the resonance driving terms can 
be measured experimentally and can be used to improve 
the routine operation of the machine. Furthermore, they 
can be used to compare the real machine with the model. 
However, a full reconstruction of the non-linear model of 
the ring has still to be shown in an experiment. This is the 
next challenge in the development of this technique. 
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