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Abstract

For almost one century (see [6]), it has been known that
vector fields E, H, D, B, etc., in the Maxwell equations,
are just "proxies" for more fundamental objects, the
differential forms  e, h, d, b, etc., that when integrated on
lines or surfaces, as the case may be, yield physically
meaningful quantities such as emf's, mmf's, fluxes, etc.
This viewpoint helps separate the "non-metric" part of the
equations (Faraday and Ampère), fully covariant, from the
"metric" one (the constitutive laws), with more restricted
(Lorentz) covariance. The usefulness of this viewpoint in
computational issues has been realized more recently:  it
eases the way towards the "mimetic discretization" research
program, which aims at providing the programmer with a
"discretizing toolbox", parts of which can be assembled to
create discrete models (consistent and convergent) of various
electromagnetic situations.  Some of those involving forces,
where one must deal with energy and momentum transfer,
are addressed.

DISCRETIZATION PRINCIPLES

Non-metric equations, discrete form

In 3D Euclidean space, with dot product " · ", norm  | |,
and standard orientation, let's consider the equations  ∂tB +
rot E = 0  and  –∂ tD + rot H = J  (with current density  J,
not necessarily divergence-free, considered here as a data),
completed by constitutive laws  H = νB  and  D = εE, and
initial conditions  B = 0  and  E = 0  at time  t = 0.  This
makes a mathematically well-posed problem.  Charge
density  Q  derives from  J  by  Q(t) = – ∫0

t (div J)(s) ds,
and Lorentz force, as needed to couple these equations
with others, is  F = Q(E + v × B).  "Geometrical methods"
discussed here put emphasis on integral quantities such as
the emf along an oriented curve  c  (derived from  E  by
∫c τ  · E, where  τ  is the unit tangent vector), the magnetic
flux embraced by an oriented surface  S  (derived from  B
by  ∫S n · B, where  n  is the unit normal vector), etc.,
rather than on vector fields such as  E  and  B.  Accordingly,
symbols  e  and  b, associated with the physical entities
"electric field" and "magnetic field" will denote the maps
c → 〈emf along  c〉  and  b → 〈flux embraced by  S〉, these
bracketed real quantities being themselves denoted by  ∫c  e
and  ∫S b.  (Alternatively, for the sake of readability, I may
use  〈c ; e 〉  and  〈S ; b 〉  instead.)  In this mood, the first
equation above, Faraday's law, rewrites as

∂t ∫S b + ∫∂S e = 0   for all surfaces  S  (1)

(endowed with an orientation), where  ∂S  denotes the
boundary of  S, with orientation induced by that of  S.

No shade of metric (length, area, dot or cross product, or
metric-linked operators such as rot) remains in (1), so
space is now construed as the naked 3D affine space  A3

(no orientation, no metric, but still, a notion of parallel
transport by translations).  Which is up to the point:  It
happens that (1) offers the most direct route to the
discretization of Faraday's law, as follows.

Unable to pack infinite objects such as spatial domains
and fields in a computer's innards, we build a discrete
model of the computational domain  D  by setting up a
cellular mesh  m, and of the fields by assigning time-
dependent degrees of freedom (DoF) to cells of this mesh.
(A simplicial mesh is assumed in what follows, but this
is not essential.)  Cells of the mesh fall in sets  N, E, F,
V  of nodes, edges, faces, volumes.  Each has its own
(arbitrary) orientation, and the overall structure is described
by incidence matrices.  For instance,  R f

e = ± 1  if edge  e
is part of the boundary of face  f, the sign depending on
whether orientations match or not.  Hence an  (F  × E)-matrix
R , where  E  and  F  are the numbers of edges and faces in
m.  Same for the  (E × N)-matrix  G  between nodes and
edges, and the  (V × F)-matrix  D   between faces and
volumes.  (One notes that  RG = 0  and  D R = 0  and
that, for simple topologies of domain  D,  ker(R) =
ran(G)  and  ker(D) = ran(R), which should be enough to
motivate, by analogy with  grad, rot, div, the notation.)
A degree of freedom  ee, interpreted as an emf [resp.  bf,
as a magnetic flux], is attributed to each edge  e  [resp.,
face  f].  Boundary conditions are taken care of by assigning
given values to some of these DoF's, and the other ones
(the genuine unknowns, to be computed) reside at edges or
faces we shall call active for this reason.

Now instead of enforcing (1) for all surfaces  S, let's be
content (this is the gist of the discretization strategy),
with surfaces that are made of an assembly of faces of  m.
By linearity, this amounts to enforcing it for each  f.
Since  ∂f = ∑ e  ∈ E R f

e
 e, by definition of the incidence

numbers (explanations about this expression are
forthcoming), one must have  ∂ tbf + ∑e ∈ E R f

e ee = 0  for
all  f, i.e., in compact form with DoF-arrays,

∂tb + R e = 0.  (1')

(Some nonzero right-hand side can pop up there, as the
result of non-homogeneous boundary conditions, and of
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the restriction of DoF-arrays, and incidence matrices as
well, to active cells, as will be done from now on.)

Ampère's relation, in a similar manner, could be discretized
as  –∂td + Rh = j, with  h  edge-based and currents  d  and
j  face-based.  We won't do that (being content to point at
the possibility, which may help with charge-conservation
issues in charged-particle dynamics), because the fact that
F ≠ E, as a rule, would make the discretization of constitutive
laws intractable.  Instead, we assign DoF's  hf  and  de  to
dual cells  fŸ  and  e Ÿ  (Fig. 1), built from the "primal"
mesh  m  by selecting a "center" (some point) inside each
primal cell and by joining them as the figure suggests.
(Two choices for such centers are popular:  barycenters of
primal cells, and centers of Euclidean circles, spheres,
etc., circumscribed to them.)  This way, dual cells are in
1–1 correspondence with primal ones (which will make
easier, below, to discretize  ν   and  ε), and each one
inherits from its primal mate a so-called outer orientation
(i.e., an orientation of a subspace that complements its
support).  This is auspicious as regards entities such as  d
and  j, for these are to do with "substantial" fluxes (electric
charge), whose very definition  refers to a definite crossing
direction (i.e., outer orientation) of surfaces they traverse.

e~

e

f

f
~

Figure 1.  Centers, and how they generate a dual mesh.

Indeed, the expression of Ampère's law, in the style of
(1), is

–∂t ∫Σ  d + ∫∂Σ  h = ∫Σ  j   for all surfaces  Σ (2)

endowed with outer orientation.  (For constrast, the kind
of orientation we had in (1) is dubbed inner.)  Consistency
in the discretization strategy suggests to enforce (2) for all
Σ  obtained by assembly of dual faces, and only those, and
the same linearity argument as above leads to

–∂td + RTh = j, (2')

with  T  for "transpose", since as one will readily see,
incidence matrices for the dual mesh are  DT, RT, GT.  In
this equation, intensities  je  are computed, from the
given  J, by taking its flux across each  eŸ.

Remark.  The duality between submanifolds (curves,
surfaces, ...) and fields in (1) and (2) has physical bearing:
One may consider the integration domains such as ∂S  or
Σ  as models for probes—measuring devices—which
measure something (emf, flow of electric charge) about

the (physical) field, and integrands,  e  or  j, as mathematical
models for the field itself.  This can be made even more
striking by introducing chains (weighted linear combina-
tions) of curves, surfaces, etc., hence vector spaces, and
cochains, elements of their duals:  chains model probes,
cochains model fields, and duality products  〈chain ; cochain〉
model observations (real numbers, as a rule, read off from
the probes' dials).  Think for instance of a voltmeter, with
its connecting wires, as a 1-chain, of a fluxmeter as a
2-chain, with reference to dimension.  (The generic name
is "p-chain".)  ◊

Remark.  A benefit of building such linear structures is
that  ∂, the boundary operator, now becomes a linear map,
from  p-chains to  (p – 1)-chains.  This justifies using the
above expression  ∂f = ∑ e  ∈ E R f

e
 e.  This also prompts

one to consider the dual  d  of  ∂, defined by  〈c ; dω〉 =
〈∂c ; ω〉 ∀ c.  Hence a local version of (1) and (2),
∂tb + de = 0  and  –∂td + dh = j, which is closer to the
received (Heaviside's) notation, especially if one notices
that  grad, rot, div, are avatars of  d, in Euclidean garb.
Note however that the integral form (1)(2) is the shortest
way to discretization.  ◊

Remark.  Not only linearity, but continuity, of maps  e,
b, h, etc., is an issue, especially in convergence proofs.
Hence a need, fortunately satisfied by recent mathematical
developments [4], for topologies on chain spaces, a subject
computer users can safely ignore.  The vocabulary (should
one speak of "cochains", or of "differential forms"?) is
still unsettled.  Here I'll use the shortest moniker, "p-forms",
for cochains of degree  p, i.e., dual objects with respect to
p-chains.  Straight and twisted  p-forms, respectively, are
dual to inner- and outer-oriented  p-chains.  Thus,  b, e,
and also  a (the 1-form whose proxy vector  A  is the
vector potential), are straight, whereas  h, d, j, and  q  (the
3-form whose proxy is  Q  above) are twisted.  (Qualifiers
even and odd would do as well, and are in use.)  ◊

Remark.  In  ∂f = ∑e ∈ E R f
e
 e, the 1-chain on the

right-hand side, being based on 1-cells of  m, is called a
cellular chain (simplicial chain when the primal cells are
simplices).  Cellular  p-chains make a finite-dimensional
vector space, whose dual consists of DoF arrays based on
p-cells.  For this reason, "DoF array" and "cellular cochain"
are synonyms.  We shall need to distinguish such cellular
chains and cochains ("discrete" objects) from chains and
cochains in general ("continuous" objects, in the Numerical
Modelling jargon).  So we shall refer to the latter as
singular chains and cochains, borrowing the term from
Homology [5].  ◊

At this stage, we know how to discretize the "metric-free"
part of the Maxwell equations, and hence, we expect metric
notions to be involved in the next task, building discrete
analogues—square matrices  νννν   and  εεεε—for the operators
ν   and  ε  that appear in the constitutive laws,

h = νb,        (3)               d = εe. (4)
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Metric features:  Hodge operators

For operators they are, and must be:  h  is a twisted
1-form,  b  a straight 2-form, objects of different types,
which rules out a simple proportionality relationship.
(Same with (4), which will be left aside here, the
transposition by analogy being easy:  e  is 1-straight,  d
is 2-twisted.)  Since the relation  H = νB  links proxy
vectors, which depend on the metric, we need metric structure
to define the  ν   of (3)—the operator— in the first place.
And just as "discretizing vector fields", and differential
operators, was not the right way to obtain (1') and (2'),
introducing a dot product does not make it easy to pass
from  ν  to  νννν .  Instead, we establish a correspondence
between vectors and bivectors (the infinitesimal versions
of curves and surfaces), first, then proceed by duality.

A vector at   x, element of the tangent space of  A3  at
point  x, can as well be considered as (a) an oriented line
through  x  (its support), plus (b) a segment on this line.
By analogy, a bivector at  x  is made of (a) an oriented
plane through  x, (b) an area borne by this plane.  Two
independent vectors  {v, w}, in this order (which specifies
the plane's orientation), determine a 2-vector, denoted
v ∨ w.  (It's safe to think of  v ∨ w  as a parallelogram,
but be aware that  (v + αw) ∨ w  is the same 2-vector,
the latter actually being an equivalence class of figures of
same oriented area in the plane.)  A twisted vector is a
line through  x  with outer orientation, i.e., a gyratory
sense around it, plus a length.  This will be enough for
now—and how to define  p-vectors and twisted  p-vectors
should be clear.  (Notice how the distinction between
straight and twisted multivectors is erased when ambient
space is oriented.)

When a metric and orientation exist, there is a natural way
to map a vector  v  to a  2-vector  w = ⊥v  (called its
"perp" by some):  In the plane through  x  orthogonal to
v, take the class of figures whose common area equals the
length of  v.  If an isotropic (relative to this metric) and
hence scalar permeability  µ0  is given, define  νv  as
⊥v/µ0.  Observe now that if  B = µ0H, as vectors go, the
flux of  B  across  νv  equals the mmf  H · v, a fact that
can be written  〈v ; h 〉 = 〈νv ; b〉.  So if we reuse the
symbol  ν   for the operator dual to  ν , defined by
〈v ; νb〉 = 〈νv ; b 〉 ∀ v,  we have  h = νb, where now  ν
does appear as an operator, called after Hodge in differential
geometry.

To do away with metric and orientation now, let's assume
a linear map  ν   is given (instead of being derived, as
above), which sends twisted vectors to straight 2-vectors.
Under the sole non-degeneracy condition  v ∨ νv ≠ 0
(with due apologies for the visual pun), the extra structure
over the tangent space provided by this "geometric Hodge"
operator is enough to induce a metric, called the "ν-adapted"
one.  (The proof-idea for this "Hodge implies metric"
result is simple:  Noticing that all 3-vectors are scalar
multiples of one of them in dimension 3, select a reference

3-vector  ∆, define the norm  |v|  by the equality  |v|2∆ =
λ2 (v ∨ νv), and adjust the real parameter  λ  to make
volumes and lengths compatible.  Technical details on
this are in [2].)  Again, the Hodge operator  ν   we need,
from 2-forms to twisted 1-forms, is the dual, defined by
〈v ; νb〉 = 〈νv ; b 〉  ∀ v.  (Why a similar, but distinct
operator  ε  will also be needed is easy to understand:  the
real action is in 3 + 1 dimensions.)  We now know the
status of  ν   and  ε  in (3)(4).

Discrete hodges

Why such a contrived way to confer metric on space?
Because, again, this makes discretization almost automatic.
The heuristic rule is that, everything to do with straight,
resp. twisted, geometrical objects must be modelled with
primal, resp. dual, simplices of the mesh.  This worked
well, above, with surfaces  S  or  Σ.  Now we need to
handle twisted vectors and straight 2-vectors.  Assume the
mesh is made of a single tetrahedron  T, cf. Fig. 2.  (This
is no serious restriction:  once obtained the  (4 × 4)-matrix
ννννT  for that one, we'll have  νννν   for the whole  m  by
assembly.)  Now, the only allowed way to represent a
twisted vector  v  is as a linear combination of the dual
edges,  fŸ, of Fig. 2, i.e., as a twisted, cellular 1-chain, and
the only way to express  νv  is as a weighted sum of
primal faces  f, i.e., as a straight cellular 2-chain.  So let
us set

νT fŸ = ∑ f' ∈ F ννννT
ff' f', (5)

which defines, by linearity, a map  νT  from twisted
cellular 1-chains to straight cellular 2-chains.  How to fix
the real weights  ννννT

ff'  in (5) will soon be addressed, but
for the time being, they are just coefficients that confer a
metric-like structure on the "discrete space"  m.  They
form a matrix  ννννT  which is seen—reasoning again by
duality—to represent also a map, from straight cellular
2-cochains such as  b  to twisted cellular cochains such as
h, of the kind that we need.  At this stage, we have with
(1'), (2'), and the discrete constitutive laws

h = ννννb,        (3')               d = εεεεe, (4')

a discrete model of the Maxwell system, living on  m.

f

e

e~

f
~

T

n

Figure 2.  One-tetrahedron mesh (barycentric case).
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DISCRETIZATION TECHNIQUES
Simulation runs of this discrete dynamical system are
easy to do (by using leap-frog time-integration, for instance,
which provides a generalization of Yee's scheme [8]), but
the obvious question is, does (1'–4') properly approximate
(1–4)?  It can be proven that this is so provided the  νT

of (5) coincide with the restriction of the original Hodge
operator  ν   to vectors such as  fŸ, within each tetrahedron
T, which we write as

ν  vec(fŸ) = ∑ f' ∈ F ννννT
ff' vec(f'), (6)

where now  vec(c)  stands for the multivector naturally
associated with the cell  c  in affine space.  So this
equality works as a convergence criterion, that  ννννT  must
satisfy.  (Note that it entails its positive definiteness.)

In current practice, the mesh  m  is built inside a space
which already possesses orientation and metric, albeit one
which is neither  ν-  nor  ε-adapted, and  ν   and  ε  are
specified as scalar (and of course metric-dependent)
coefficients.  In that case, vectors and bivectors can be
identified (via the perp operator), and (6) can be understood
as a vector equality:  vec(f Ÿ)  is the vector traced out by  f Ÿ,
and  f  is the vectorial area of face  f, while  ν   is just the
scalar reluctivity.  One must then compute numbers  ννννT

ff'

that satisfy (6), and this of course depends on how the
above "centers", defining the dual mesh, are selected.  Three
cases:

(1) Barycentric dual mesh.  It then happens that the mass
matrix of Whitney face elements,  ννννT

ff' = ∫Τ ν wf
 · w

f',
satisfies (6).  (The analogous criterion for  εεεε  is satisfied
by the mass-matrix of edge elements, εεεεT

ff' = ∫Τ ε we
 · w

e'.
These  νννν   and  εεεε  are dubbed "Galerkin (discrete) hodges".
Notice the use, optional, of proxy vector fields here.)  See
[1] for a proof.  This sheds some light on the Galerkin
approximation of Maxwell equations (which much predates,
of course, the present theory), by explaining its kinship
with the barycentric construction of the dual mesh.

(2) "Circumcentric" dual mesh.  Now, since the line that
joins the circumcenters of  f  and  of  T  is orthogonal to
f,  vec(f)  and  vec(f Ÿ)  are parallel, which makes it very
easy to satisfy (6):  Just set  ννννT

ff = ν  length(fŸ)/area(f), and
all other entries (off diagonal) to 0.  This is an essential
feature of the MAFIA family of codes [3].  Thus having
ννννT  diagonal is a great advantage (e.g., the Yee-like scheme
becomes fully explicit), but not all primal meshes have a
circumcentric dual, and mesh generators may have a hard
time complying with this requirement.

(3) Generic dual mesh.   With arbitrary placed centers, it is
still possible to satisfy (6), in a non-unique way, but with
weights  ννννT

ff'  that do not necessarily make a symmetric
matrix.  (A further criterion that allows such symmetry is
known, but still mysterious.)  I mention this only for
thoroughness, and to point out that whether a discrete
Hodge should be symmetric is an open issue.  (This is
not required by the convergence proof.)

Last word on this, when  ν   is given as a tensor, there is
always a metric (the  ν-adapted one, up to a factor) that
makes it diagonal, so the above considerations hold by
shifting to this metric first.  But note that it may change
from an element to its neighbors.

Whitney forms

To carry on, we need the notion of wedge product of
forms, which can be cheaply defined as follows.  Assume
a Euclidean structure, and let vector fields  E  and  A
(without any special physical significance) stand proxy for
the 1-forms  e  and  a.  The 2-form  e ∧ a  is then the one
E ×  A  stands proxy for.  Let the vector field  J  stand
proxy for the 2-form  j.  The 3-form  j ∧ e  is then the
one  E · J  stands proxy for.  It's a simple exercise [1] to
show that the wedge product   ∧  thus defined does not
depend on the scaffolding Euclidean structure one has used.

Let  k, l, m, n  be the four vertices of a tetrahedron, and
λ i(x)  the barycentric weight of point  x  with respect to
vertex  i, where  i ∈ {k, l, m, n}.  Whitney forms,
associated with the simplices  e = {m, n}  and  f =
{l, m, n}, oriented by the ordering of their vertices, are

we = λm dλn – λn dλm,

wf = 2(λ l
 dλ

m
 ∧ dλ

n + λm
 dλ

n
 ∧ dλ

l + λ
n
 dλ

l
 ∧ dλ

m).

In the spirit of what precedes, where one tries to map
features of the continuous model of electromagnetism to
the discrete one living on  m, Whitney forms can be
understood as a device to map curves and surfaces to
cellular chains:  To curve  c  or surface  S  corresponds
the 1-chain  ∑ e ∈ E [∫c w

e] e  or the 2-chain  ∑ f ∈ F [∫S w
f] f,

which one can construe as simplicial approximations of  c
or  S.  Now, suppose a 2-form  b  is given.  Then  ∫S b
—or let's rather write that  〈S ; b〉  for better insight—is
approximately  〈∑f ∈ F [∫S w

f] f ; b〉 ≡ ∑f ∈ F 〈S ; wf〉 〈f ; b 〉
= 〈S ; ∑ f ∈ F bf w

f〉, where we have set  bf = ∫f b.  This
shows that the 2-form  ∑f ∈ F bf w

f, built from the DoF
array  b  in the finite-element tradition, i.e., by using the
wf  as interpolants to pass from the DoFs to a field, is a
proper approximation for  b.  Whitney forms thus play a
dual role:  they map singular chains to cellular chains, and
also, by duality, can be used to build singular cochains
from cellular ones.

Which is what simulation requires:  Solving (1'–4'), an
ODE system, yields DoF's, but we want more:  to be able
to reconstruct fields, with controllable approximation.
Whitney forms allow one to do just that.

A toolkit

Let's now stop to evaluate what we have.  From an
abstract viewpoint, a kind of reduction of standard exterior
calculus (which dominates the theoretical background of
classical electromagnetism) to some "discrete exterior
calculus" (DEC), developed over a finite combinatorial
structure (the mesh  m).  Founding DEC, in some form,
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is an active research field these days [9].  (A nice feature
of the approach sketched here is its reliance on a unique
concept:  the Whitney map from singular chains to cellular
chains.)  From a concrete viewpoint, we have a toolbox:
Given a modelling problem governed by the Maxwell
equations, one can erect a discrete, computer-manageable
model, by first building a mesh, then picking and assembling
the relevant parts.  These are cellular chains (to model
surfaces such as material interfaces, or curves like voltmeter
connectors), matrices  G, R , D   (or – DT, RT, –GT) to
replace grad, rot, div  (depending on which kind of form,
straight or twisted, the proxy vector field stands for),
matrices  εεεε  and  νννν   (or its inverse  µµµµ) to replace  ε  and
µ, matrix  σσσσ  as a substitute for conductivity.

To give just one example (others can be found in [1]):
The charge conservation relation,  ∂tQ + div J = 0, becomes
∂tq – G

Tj = 0, with  q  node-based and  j  edge-based.
This is of course one of the Kirchhoff laws, which is not
surprising:  By its very principle, the discretization process
constructs two interlocked, and interacting, equivalent
networks, one on the primal mesh, with currents (the  jes)
flowing between primal nodes along primal edges, according
to the Kirchhoff-like equations

GTd = q,   d = εεεεe,   R e = – ∂tb,

the other one on the dual mesh, with magnetic fluxes (the
bfs) flowing between dual nodes along dual edges,
ruled by

RTh = j + ∂td,   h = ννννb,   Db = 0.

Moreover, if we adopt the notation  (b, h)  or  ( j, e ),
with bold parentheses in both cases, for such expressions
as  ∑ f ∈ F bf hf  or  ∑ e ∈ E je ee, there are ready-made
interpretations for these quantities:  (b, h), equal to
(ννννb, b), is the discrete analogue of the integral  ∫D νb ∧ b,
or in more familiar terms, of  ∫D νB · B, so it represents
(up to a factor 2, and with the linear constitutive laws we
consider here) the magnetic energy inside the system.  If
one cares to localize this energy (though this, arguably,
makes little sense),  bf hf  is an approximation of (twice)
the energy present in the "control domain" of face  f,
pictured in Fig. 3.  Similarly,  ( j, e )  corresponds to
Joule power,  i.e.,  ∫D j ∧ e, or  ∫D J · E, to which the
control domain of edge  e  (Fig. 3) contributes  je ee.
Electric energy is of course  (d, e )/2, etc.

e

f

n

T

Figure 3.  Parts of control domains of node  n, edge  e,
face  f, contained in  T.  (Other parts are contributed by
adjacent volumes which share  n, e, or  f  with  T.)

Satisfying as this may be, it also raises further questions:
What about the Poynting flux,  ∫∂D e ∧ h ?  Can it be
recovered from DoF arrays by a simple formula?  How
should we understand classical expressions such as  v × B,
or  J × B, or that for the Maxwell tensor, in terms of
differential forms first (just to make a stepping stone
towards the next point), then in terms of DoF arrays?  All
these are needed pieces in the toolkit.

The  v × B  term in the Lorentz force

Since all these missing pieces have to do with
electromagnetic forces, in some way, it may help to
understand what force is in the first place:  Force, as a
geometric object, is a covector, not a vector, because it's a
linear map from vectors (understood as virtual displace-
ments) to reals (virtual power).  That Coulomb force on a
point charge  Q  be  Qe, a 1-form, is therefore consistent.
It means that  v ×  B  should stand proxy for a 1-form, too.

Let's assume we are dealing with a velocity field  v, to
which corresponds a flow  ut : A3 → A3  determined by
the differential equation  ∂ty = v(y), y(0) = x, with  u t(x) =
y(t).  As dragged by the flow, from time  0  to time  t, a
point  x  describes a piece of flow line  ext(x, v, t), or
extrusion of  x  by  v  from 0 to  t, and a curve  c  sweeps
a surface  ext(c, v, t).  Now  〈ext(c, v, t) ; b〉  makes
sense, for a 2-form  b, and we can define a  1-form,
denoted  ivb, by  〈c ; ivb〉 = limt  → 0 t

–1 〈ext(c, v, t) ; b 〉.
It's not difficult to see that its proxy field is  –v × B.  A
convoluted definition if any, but as several times before,
it happens to be the one that most easily can be mimicked
at the discrete level, as follows.

The velocity field  v  is a map from points,  x, to vectors,
v(x), e.g., a vector-valued 0-form.  Its natural discretization
is thus by a vector  v n  at each node of  m, with linear
interpolation within tetrahedra, i.e.,  v(x) = ∑n ∈ N v n λ

n(x).
Given  b, face-based DoF array, we want edge values for
ivb.  By linearity, it's enough to be able to do that for the
partial velocity field  v n λ

n(x).  Let the flow of this field
extrude edge  e, and express this extrusion, in the  t = 0
limit, as a linear combination  ∑f ∈ F α f

e f  of faces.  (At
most two of them, hinged upon  e, are concerned.)  The
edge value for  i vb  is then  ∑f ∈ F α f

e
 bf.  (See [2] for

details.)  Calling  ivb  the edge-array thus obtained, we
can now discretize a MHD problem, in Eulerian framework,
with a given velocity field, where the conduction law is  J
= σ(E + v ×  B):  Just transpose that as  j = σσσσ(e – ivb).

The Laplace force

This may look more puzzling, because since both  j  and
b  are two-forms, one may wonder what  J × B  stands
proxy for.  But consider virtual power,  (J × B) · v.  For
any given  v, this is the proxy of a (twisted) 3-form, the
density of virtual power, which one recognizes to be
ivb ∧ j.  Force is therefore the mapping  v → ivb  ∧ j, that
is to say, a covector-valued 3-form, which is at it
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should be:   Integrating this 3-form over a volume will
give a covector, the resultant of body forces.  Momentum,
obtained by time integration, is of the same type, and
stress is a (twisted) covector-valued 2-form, whose integral
over a surface  Σ (outer oriented) gives the flux of momentum
through it.  Now that we know how to deal with  ivb,
discretization is easy:  the virtual power of Laplace forces
is  (ivb, j )  and discrete force is the map  v  → (ivb, j ).
Degrees of freedom for  v  being vectors  v n, one at each
node, force appears as a node-base array of covectors  fn,
and virtual power is  ∑n ∈ N 〈v n ; fn〉.

The Poynting flux

If two 1-forms  ω   and  η  are known by their edge DoFs
ωωωω   and  ηηηη, there is no difficulty with integrals  ∫f ω  ∧ η,
and hence with the "discrete wedge product"  ωωωω  ∧∧∧∧ ηηηη:
Assuming for simplicity that edges of  f  are labelled 1, 2,
3, and oriented like  ∂f  (i.e., R f

i = 1, for i = 1, 2, 3), a
simple manipulation of Whitney forms shows that
∫f ω  ∧ η = [ωωωω 1ηηηη2 + ωωωω 2ηηηη3 +ωωωω 3ηηηη1 – ηηηη1ωωωω 2 – ηηηη2ωωωω 3 – ηηηη3ωωωω 1]/6.
(Similar formulas hold in all dimensions and degrees.)
The wedge product defined by  (ωωωω  ∧∧∧∧ ηηηη)f = ∫f ω  ∧ η  is not
associative, which is felt like a problem by some (see [7]
for a discussion, and a proof that the non-associativity
"vanishes in the continuous limit"), but is not our concern.
What is more annoying is that we can't evaluate  ∫f e ∧ h
by this method.

5
e

e
1

e
2

e3

e4

h

h '

h h+ 3
2

h'

h

h + 
2

3 h'

'

e  + e  + e  + e 
8

1 2 3 4

e  + e  + 2e 1 4 5

12

e  + e  1 3

6

Σ Σ

Σ

Figure 4.  From DoF's  e i, i = 1 to 4 and  h, h'  (top),
how to reconstruct edge DoF's for both  e  and  h  on
the shaded triangle  Σ   (bottom), which is half of the
dual face  e Ÿ.  Both  h, h'  are computed by integration
of  νb  (well defined along these segments).  All
needed values are then obtained by affine interpolation.

Indeed, suppose  e  and  b  are known, hence their
approximations  e = ∑ e ee w

e  and  b = ∑f bf w
f.  Then  h

= νb, though well-defined inside tetrahedra (if  ν   behaves)
has no well-defined restriction to primal faces (because  wf

has none).  To evaluate  ∫S e ∧ h is thus an impossible
challenge if surface  S  is modelled, as one is tempted to
do in particular when  S = ∂D, as a primal 2-chain.  That
was to be expected, for  e ∧ h  is, like  h, a twisted

2-form, and "twisted objects live on the dual mesh" in our
discretization paradigm.  This suggests to integrate  ∫e ∧ h
on dual faces, and Fig. 4 should, better than words, explain
how.  The idea is to first obtain the integrals of both  e
and  h  along the edges that bound the "small face"  Σ,
shaded, of Fig. 4, after which the above formula can be
used.  Since both  e  and  h = νb  are affine functions of
position (if one assumes  ν   constant inside each volume),
their integrals along an oriented straight segment  s  are
affine functions of  s, which is the trick used in Fig. 4.
We also took  dh = 0  into account (note that 3(h + h')/2
= h + (h + 3h')/2, in accordance with the Stokes theorem).
If  dh = j, nonzero, on the other hand, the flux of the
twisted 2-form  j  through  Σ, well defined, is thrown in.

By adding contributions of such small faces, one can
compute  ∫Σ e ∧ h  for any assembly  Σ  of dual faces.
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