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Abstract

During the recent years so called geometric techniques
have become popular in computational electromagnetism.
In this paper, exploiting differential geometry and mani-
folds, we first give a meaning to what is meant by geomet-
ric approaches. Therafter we examine some implications
of such geometry in numerical analysis of electromagnetic
field and wave problems.

INTRODUCTION

Recently, so called geometric approaches have become
rather popular in generating numerical solutions for elec-
tromagnetic boundary value problems. In this context the
word geometric is typically chosen to emphasize the idea
that the degrees of freedom are not related only to points,
but instead to “edges”, “faces”, and “volumes” as well.
Then, thanks to the generalized Stokes theorem, differenti-
ation can be understood as evaluation of functions over the
boundaries of such cells. Eventually, the approach results
in an elegant geometric reinterpretation of finite elements
and finite difference techniques. Moreover, as the basics
are rather easy to capture, the approach possess some ped-
agogical advantages. [1], [2], [3], [4], [5], [6]

Such a computational view, however, does not yet ex-
plain what the geometry of electromagnetism is all about.
For this reason, in this paper we will first focus in more de-
tails to geometry and only thereafter examine what is im-
plied to field and wave analysis.

BACKGROUND

The notions of electric and magnetic fields are not mean-
ingful without taking sides to the underlying spatial (and
possibly temporal) domain. For, in the formal sense the
field notitons are mappings between a spatial domain and
some vector space. Geometry is informally about a study of
spatial relationships, and consequently, it is a tool to char-
acterize what kind of properties the domain of electromag-
netic fields has. To further develop this idea, we need first
to introduce some tools.

Manifold

Let us start from manifolds. In short, a manifold is a set
and a non-empty collection of maps from R

n to the under-
lying set. These maps are known by name charts.
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To build a prelimanary view, let’s say the laboratory, i.e.,
the “real spatial space” in which we want to know the elec-
tromagnetic fields is modelled as a point set Ω. The set of
our manifold M is some subset X ⊂ Ω.1

By definition, a chart of our manifold should then be a
map from R

3 to set X . For example, the model of some ob-
ject one builds in the preprocessor of a finite element code
is meant to point from R

3 to X (i.e., to “reality”). Conse-
quently, we may consider the model in the preprocessor as
the domain of a chart from R

3 to set X , see Fig. 1 and 2.

�

�

�

R
3

�

point set X

Figure 1: An elementary example of a primitive manifold.
Point set X is here a coaxial cable and the chart maps from
R

3 to X .
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Figure 2: Another collection of charts yielding coordinates
for the same coaxial cable as in Fig. 1. But now, due a dif-
ferent choice of charts the model appears visually bit dif-
ferent.

The very idea of such a chart is to express set X by coor-
dinates, or more precisely, by n-tuples of real numbers. (In
our example, one has n = 3, and the 3-tuples are triplets
of real numbers.) Thereafter, thanks to the real numbers,
arithmetics in set X becomes possible.

It is plain that the charts cannot be arbitrary mappings,
but instead they must have certain properties [7]: A dif-
ferentiable manifold of dimension n is a connected topo-
logical space X and a collection of charts (also called a

1The universal point set Ω is introduced only for the reason to enable
us to take sides on shapes of bodies.
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collection of coordinate systems) such that

1. each coordinate system is a homeomorphism of an
open set of R

n into a subset of X ,

2. set X can be covered by a finite or denumerable num-
ber of the chart codomains,

3. if the intersection of two chart codomains cod(c) and
cod(c′) is not empty, then the so called transition map
(or transformation of coordinates) c−1 ◦ c′ is smooth
and regular. In this case one says charts c and c′ are
mutually compatible.

Atlas

An atlas is the collection of all coordinate systems of X .
Thus, an atlas is an equivalence class; If all charts c ∈ C
and c′ ∈ C′ of manifolds {X, C} and {X, C′} are mutually
compatible, then C and C′ are equivalent [8].

The very idea is to put emphasis on the property that co-
ordinate systems for X exists instead of focusing on some
specific charts. This is a tiny, but here, simultaneously a
significant move. For, the idea is that the electromagnetic
theory should not depend on the coordinate systems chosen
by the modeller.

In computational electromagnetism one typically as-
sumes almost without any further consideration that the do-
main of electromagnetic fields can be expressed with coor-
dinates at will. However, be aware, formally such a move
should first be justified, and for this, we may use Euclidean
geometry.

GEOMETRY

The classical Euclidean geometry [9] can be postulated
in five basic axioms which have to do with straight lines
and circles. Here, instead of taking sides to these axioms,
we’ll rather focus on these straight lines and circles. For, at
first, the very idea is that a ruler (i.e. straight edge without
any grading) and a compass are enough to create coordi-
nate systems for our laboratory point set X . (We assume
dimension n is at most three.)

In other words, no other tools than a ruler and a compass
are needed to create locally the structure of linear space to
set X . More precisely, introducing such a structure locally
is about constructing the so called tangent spaces.

The compass enables us also to recognize the most sym-
metrical barrels –or, in more technical words, barrels with
maximal isotropy groups [10]. Such barrels generate norms
which have the special property that they do not privilidge
any direction and they stem for a scalar product, Fig.
3. Consequently, they deserve a dedicated name: an Eu-
clidean norm.

There is no absolute choice of the most symmetric barrel.
For, the the same ellipsoid generated with a compass –that
is, with the object we have chosen to call a rigid body– ap-
pears different depending on our choice of coordinate sys-
tem. And now, as there is no choice of a canonical coor-

dinate system, it is not possible to say which ellipsoid is
a sphere in the absolute sense, Fig. 3. Still, we may talk
of the Euclidean geometry, for all Euclidean structures (the
affine space equipped with an Euclidean norm) are equiva-
lent up to a linear transformation. [10]

Figure 3: Examples of one and the same ellipsoid around a
point represented in different coordinate systems. The one
which we recognize as a sphere depends on the choice of
chart.

Summing up, Euclidean geometry provides us with a
collection G of charts, which we’ll call by name “Euclidean
chart collection”.

GEOMETRY OF ELECTROMAGNETISM

We have now enough background to specify a proper
meaning for term “geometry of electromagnetism”. The
key idea is: electromagnetic fields can be interpreted as an-
other collection of charts mapping to set X . To explain the
idea, notice first that we know already that {X,G} is a Rie-
mannian manifold; Locally every tangent space of x ∈ X
has the Euclidean structure.

Now, let us employ electrostatics as a simplifying ex-
ample and say c is a topologically trivial charged conduc-
tor. The electrostatic field is the pair {e, d}, where e is the
1-form called electric field and d the 2-form called elec-
tric flux. Thanks to the properties of manifold {X,G}, in
the complement of c in X we may say what pair {e, d} is
precisely: Assuming appropriate boundary conditions pair
{e, d} is the solution of equations

de = 0 , (1)

dd = 0 , (2)

d = �εe (3)

where d is the exterior derivative and �ε is the Hodge oper-
ator including permittivity. Notice, although we do not se-
lect explicitly some coordinate system, the pair {e, d} ful-
filling (1), (2), and (3) is already fully meaningfull.

As soon as we may talk of the electrostatic field {e, d},
we may also define equipotential layers and field lines:
Definition 1: A 2-dimensional connected submanifold S
of M = {X,G} is an equipotential layer, if for all x ∈ S
and v ∈ TxS (i.e, vector v is in the tangent space of S at
point x) implies ex(v) = 0.
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Definition 2: A 1-dimensional connected submanifold F
of M is a field line, if for all x ∈ F properties u ∈ TxF
and v ∈ TxX imply dx(u ∧ v) = 0.

And now, in the same manner as a ruler and a compass
was exploited on the geometric side, also the field lines and
equipotential layers can be employed to introduce a new
chart collection of X\c. We call this by name “electric
chart collection” E .

In this spirit the pair {X\c, E} is called by name electric
geometry. The electric geometry has its own metric struc-
ture, which we’ll name ε-metric. Distances between pairs
of points in X\c get a proper meaning as electric geodesics.

In a more general setting name electromagnetic geome-
try will consequently refer to pair {X, EM}, where the col-
lection of charts EM is obtained from the electromagnetic
phenomenon. Notice that chart collections EM and G are
two representatives of one and the same atlas.

SOLUTIONS OF BOUNDARY VALUE
PROBLEMS

Practical electromagnetic design needs solutions of elec-
tromagnetic boundary value problems. The solutions of
such problems –be they analytic or numerical– are map-
pings from some coordinate system to vector spaces mod-
elling the electromagnetic notions. Consequently, in terms
of manifolds, the solution of an electromagnetic boundary
value problem can be understood as a transition map

c−1
em ◦ cg : R

n → X → R
n

from the domain of some geometric chart cg to some do-
main of an electromagnetic chart cem, Fig. 4.

X

EM G
� �cem cg

�
c−1
em ◦ cg

Figure 4: Solutions of electromagnetic boundary value
problems can be understood as transition maps from the
domain of a geometric chart to the domain of an electro-
magnetic one.

Example 1: Let us say we solve in a 2d domain X eqs. (1),
(2), and (3) in terms of potentials using finite elements. As
a solution we get potentials {ϕ,ψ}, and formally, the ques-
tion is of generating a map (x, y) → (ϕ,ψ). Now, (x, y)
are Euclidean coordinates of point ω ∈ Ω, and (ϕ,ψ) are
electric coordinates of this very same point. Thus, map
(x, y) → (ϕ, ψ) is a transition map from one chart to an-
other.

SOFTWARE SYSTEMS

Once the solutions of boundary value problems are in-
terpreted as transition maps, then, consequently, a finite el-
ement, finite difference, or finite integration software sys-
tem becomes a machinery to construct transition maps be-
tween the geometric and electromagnetic charts chosen by
the user. In developing finite element kind of software sys-
tems one can exploit this kind of geometric approach in
several ways. Let us next consider a few examples.

Twisted objects

Let us first consider “twisted objects” such as supercon-
ducting wires made of twisted superconducting filaments
imbedded in some conductor. The magnetic field generated
by such a wire is a two dimensional problem, which can be
solved with standard 2d finite element software provided
the system allowed the user to introduce the transition map
from the twisted wire to a straight one. To see the point,
interpret the two images of Fig. 5 to represent one and the
same object in domains of two different charts. (The one
on the left is in the domain of an Euclidean chart.)

Next, recall that the exterior derivative is meaningful as
soon as there is topology on set X . By definition, the un-
derlying set of a manifold has topology. Thus, Maxwell’s
equations do not depend on the choice of chart. That is, in
case of Fig. 5, the Maxwell equations can be established
before the choice of the coordinate system. So, what re-
mains is to introduce a transition map from the Euclidean
chart(on the left in Fig. 5) to the coordinate system on the
right of Fig. 5 to give status to the constitutive law and
metric. (The numeric values of permeability and other ma-
terial parameters are specified on Euclidean charts.) As a
result one gets a 2d boundary value problem which is fully
meaningful in the domain of the coordinate system on the
right hand side of Fig. 5.

��

Figure 5: To compute fields caused by twisted objects, all
one needs is to give meaning to the constitutive law by in-
troducing a transition map between a straight bar and the
twisted object.

Mesh generation

Typically, the existing software systems include only one
single chart up to scaling. Furthermore, the user has no
choice of the barrel generating Euclidean metric.
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To illustrate the idea, how the choice of charts and bar-
rels could be exploited, let us consider a simple electric
power line as shown in Fig. 6. It is well known that mesh
generation algorithms tend to get in difficulties if the do-
main has tiny details. The electric power line is an example
of such a case. The radius of the wires and of the thick-
ness of the poles are rather small compared to the distance
between the poles. The very difficulty lies in creating the
first finite element mesh within the system. However, if the
end user is able to select the charts and barrels employed,
then he may also insert the geometric data in coordinate
system(s) which helped the mesh generator to bypass the
known pitfalls, see Fig. 6 and 7. [11]

x

y

x
y

Figure 6: One and the same electric power line (point set)
represented in different coordinate systems. The difference
lies in the metric of R

n which is not chosen the same way in
the region between the poles –i.e., in the area between the
ticks on the x-axis. Still, both charts map to one and the
same point set. Consequently, both charts can be employed
to solve the electromagnetic fields generated by the power
line. However, generating the mesh is easier in the lower
domain.

Force computation

The Maxwell stress tensor can be expressed without met-
ric structures, see [12]. One may, for instance, exploit this
in optimization problems to insert the data of the integra-
tion domain directly in terms of the indexes of the mesh
entities. Furthermore, the metric independent form of the
stress tensor enables one to pre-compute the cost function
in order to quickly evaluate its value each time the solution
of the field problem is available.

REVERTED WORKING DIRECTION

By definition the transition maps are diffeomorphic. This
implies, one does not have to restrict oneself to work from
the geometric chart collection towards the electromagnetic
one. Instead, one may revert the reasoning and work from
the electromagnetic charts towards the geometric ones.

Figure 7: Example of one and the same finite element mesh
generated for in the domain of two different charts. The
upper domain appears shorter than the lower one implying
mesh generation is easier in the upper one.

Engineering design is, in fact, often about working in
this direction. For example, in optimization some specifi-
cation for the electromagnetic field is given a priori, and
the task is to find out which geometry produces this field.
The common work flow is to make a first attempt, and then
the engineer or the system iterates the design until a solu-
tion meeting the specification is found. Now, the geomet-
ric idea is, once the first solution is found –that is, the first
electromagnetic coordinates of set X are given– then one
may solve for a desired design without changing this field
solution.

For an example see Fig. 8, which can be interpreted
to represent the electric field –the field lines and the
equipotentials– of some parallel plate capacitor. Say, the
horizontal lines are the equipotentials. Next, let’s fix the
electric coordinates of the points in the (sub)domain be-
tween the plates of the capacitor.

Now, we may solve for new Euclidean coordinates in
this domain without changing the electric chart. This corre-
sponds to changing the shapes of the capacitor plates and to
solving for another capacitors which have the same electric
field, see Fig. 9. (The same electric field means the charge
and the voltage of the capacitor are fixed.) The practical ad-
vantage is that all the new solutions of the Euclidean coor-
dinates are obtained with the same system matrix. Varying
the shape corresponds to changing the right hand side of
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the system of equations, as if the Dirichlet boundary condi-
tion is changed in ordinary finite element solution process
of the Laplace equation. This implies, if the system ma-
trix is inversed, then all the new Euclidean coordinates are
found by simple matrix-vector products.

Figure 8: Field lines and equipotentials between a parallel
plate capacitor.

Figure 9: The same field but the shape of the plates has
changed. This new shape is found by solving for Euclidean
coordinates without changing the electric chart.

CONCLUSION

The basic reasoning behind commonly employed com-
putational techniques and software systems still rely on
ideas which were developed a long time ago before the
birth of first computers. Computers, however, function in a
very different way than human beings. Consequently, the
techniques which fitted well the needs of analytic design

do not necessarily lend themselves to modern computing.
Thus, there is a good reason to re-examine how the old
ideas can be expressed in a more general setting. Espe-
cially, differential geometry and the theory of manifolds are
found to be useful in developing a deeper understanding of
electromagnetic field and wave analysis.
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