Paper | Title | Page |
---|---|---|
WEA3MP02 | Self-Consistent Simulations of High-Intensity Beams and E-Clouds with WARP POSINST | 256 |
|
||
Funding: Supported by U. S. Department of Energy under Contracts No. DE-AC02-05CH11231 and No. W-7405-Eng-48 and by US-LHC accelerator research program (LARP). We have developed a new, comprehensive set of simulation tools aimed at modeling the interaction of intense ion beams and electron clouds (e-clouds). The set contains the 3-D accelerator PIC code WARP and the 2-D "slice" e-cloud code POSINST, as well as a merger of the two, augmented by new modules for impact ionization and neutral gas generation. The new capability runs on workstations or parallel supercomputers and contains advanced features such as mesh refinement, disparate adaptive time stepping, and a new "drift-Lorentz" particle mover for tracking charged particles in magnetic fields using large time steps. It is being applied to the modeling of ion beams (1 MeV, 180 mA, K+) for heavy ion inertial fusion and warm dense matter studies, as they interact with electron clouds in the High-Current Experiment (HCX). We describe the capabilities and present recent simulation results with detailed comparisons against the HCX experiment, as well as their application (in a different regime) to the modeling of e-clouds in the Large Hadron Collider (LHC). |
||
|
Slides |