Paper | Title | Page |
---|---|---|
WEMPMP03 | Parallel Higher-Order Finite Element Method for Accurate Field Computations in Wakefield and PIC Simulations | 176 |
|
||
Funding: Work supported by US DOE contract DE-AC002-76SF00515 Under the US DOE SciDAC project, SLAC has developed a suite of 3D (2D) Parallel Higher-order Finite Element (FE) codes, T3P (T2P) and PIC3P (PIC2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in RF cavities of complex shape. The codes are built on the FE infrastructure that supports SLACs frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular) meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. PIC3P (PIC2P) extends T3P (T2P) to treat charged particle dynamics self-consistently using the PIC approach, the first such implementation on the FE grid. Examples from applications to the ILC, LCLS and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids. |
||
|
Slides | |
WEA4IS01 | Superconducting Cavity Design for the International Linear Collider | 271 |
|
||
The International Linear Collider (ILC) is the highest priority future accelerator project in High Energy Physics whose R&D is presently the focus of the Global Design Effort (GDE). SLAC's Advanced Computations Department (ACD) is involved in the accelerating cavity design for the ILC main linac using the advanced tools developed under the US DOE SciDAC initiative. The codes utilize higher-order finite elements for increased accuracy and are in production mode on distributed memory supercomputers at NERSC and NCCS to perform the large-scale simulations needed by the ILC cavity design. Presently the code suite includes the eigensolver Omega3P for calculating mode damping, the time-domain solver T3P for computing wakefields, and the particle tracking code Track3P for simulating multipacting and dark current. This talk will provide an overview of their applications to the baseline TDR cavity design, and the alternate Low-Loss and Ichiro designs. Numerical results on HOM damping, cavity deformations, multipacting, and trapped modes in multi-cavity structures will be presented. Design issues with the input coupler and the HOM notch filter will also be addressed. | ||
|
Slides |