A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Haber, I.

Paper Title Page
WEA3MP03 Benchmarking of Space Charge Codes Against UMER Experiments 263
 
  • R. A. Kishek, G. Bai, B. L. Beaudoin, S. Bernal, D. W. Feldman, R. B. Fiorito, T. F. Godlove, I. Haber, P. G. O'Shea, C. Papadopoulos, B. Quinn, M. Reiser, D. Stratakis, D. F. Sutter, J. C.T. Thangaraj, K. Tian, M. Walter, C. Wu
    IREAP, College Park, Maryland
 
  Funding: This work is funded by US Dept. of Energy and by the US Dept. of Defense Office of Naval Research.

The University of Maryland Electron Ring (UMER) is a scaled electron recirculator using low-energy, 10 keV electrons, to maximize the space charge forces for beam dynamics studies. We have recently circulated in UMER the highest-space-charge beam in a ring to date, achieving a breakthrough both in the number of turns and in the amount of current propagated. As of the time of submission, we have propagated 5 mA for at least 10 turns, and, with some loss, for over 50 turns, meaning about 0.5 nC of electrons survive for 10 microseconds. This makes UMER an attractive candidate for benchmarking space charge codes in regimes of extreme space charge. This talk will review the UMER design and available diagnostics, and will provide examples of benchmarking the particle-in-cell code WARP on UMER data, as well as an overview of the detailed information on our website. An open dialogue with interested coded developers is solicited.

 
slides icon Slides