

Jian-Wei Pan

Chief scientist

Quantum Science Satellite & National Quantum Communication Backbone Project

CAS Center for Excellence in Quantum Information and Quantum Physics

University of Science and Technology of China

National Laboratory for Physical Sciences at Microscale

Cheng-Zhi Peng

Chief Engineer of "Mozi" quantum science satellite

Yu-Ao Chen

Qiang Zhang

Ji-Gang Ren

Juan Yin

Sheng-Kai Liao

Ping Xu

Yuan Cao

Jun Zhang

Teng-Yun Chen

Xiao Jiang

Qi Shen

Quantum Communication in China

Fiber based Quantum Communication

100km Decoy-QKD Peng et al., PRL 98, 010505 (2007)

200km Decoy-QKD Liu et al., Optics Express 18, 8587 (2010)

404km MDI-QKD Yin, et al., PRL. 117, 190501 (2016)

Free Space Quantum Communication

Time Separate Code Separate Co

13km quantum entanglement distribution Peng *et al.*, Phys. Rev. Lett. 94, 150501 (2005)

16km quantum teleportation Jin *et al.*, Nature Photonics 4, 376 (2010)

100km quantum entanglement distribution Yin et al., Nature 488, 185 (2012)

QKD toward satellite Wang *et al.*, Nature Photonics 7, 387–393 (2013)

Background: Micius

Satellite-to-ground QKD Liao *et al.*, Nature 549, 43 (2017)]

Satellite-based quantum entanglement distribution Yin *et al.*, Science 356, 1140 (2017)

Ground-to Satellite teleportation Ren *et al.*, Nature 549, 70 (2017)

Satellite-relayed intercontinental QKD Liao *et al.*, Phys. Rev. Lett. 120, 030501 (2018)

Entanglement-based QKD

Yin et al., Nature 582, 501 (2020)

nature

Background: Micius & Backbone Fiber Link

- Four quantum metropolitan area networks in Beijing , Jinan, Shanghai, Hefei with a backbone fiber link over 2000 km.
- Two ground-satellite links that connect Xinglong and Nanshan separated by 2600 km.
- Xinglong is further connected to the Beijing's fiber network.

Let us have a chance to show the feasibility of the global quantum network.

4

Recent progress with Micius - Cooperation

201804@Tenerife High-speed Europe-China QKD

201910@Moscow

➤ South Africa, Australia...

4

Challenges of Practical Global-Scale Quantum Network

The limitation of Micius

- **Experiment time is** \sim 6 minutes for each pass
- Coverage range is about 500km (Radius)
- Have to be in the shadow of earth

☑Quantum constellation with LEO nano satellites

☑The MEO-to-GEO quantum satellite

Quantum Communication Project

► LEO Quantum Satellite Plan (satellite-ground link in 2023)

Optica 7, 734-737 (2020)

Singapore SpooQy-1 (2019) USA CAPsat (2021) Detector

U.K QUARC (Launch 2023)

Canada QEYSSAT (End 2022)

Austria &France NanoBob

- ▶ June 2019, European Commission & ESA & All 27 EU Member States, (By 2027)
 - "Quantum Communication Infrastructure" (EuroQCI)
- June 2021, G7
 - "Federated Quantum System" (FQS)

Building Quantum Constellation with Compact Payloads

"Quantum constellation"

Nano Satellites

- **✓** Weight: 100kg (Compact QKD payload 35 kg)
- **✓ Repetition Frequency: 625MHz**
- **✓** Real-time key extraction based on laser communication
- **✓** Carrying the rocket of the Institute of Mechanics
 - "Zhongke No. 1" (Launch in 2022)

Compact and Movable Ground Station

- ► Miniaturized and lightweight payload (500kg → 30kg)
- Compact and movable ground station system

Significantly reduce the development and launch costs of quantum satellites, laying a foundation for the large-scale and commercial applications of satellite-based quantum communication.

- ✓ 3 or 5 NanoSat in 5 years
- ✓ More than 100 users
- ✓ Key weekly update
- ✓ Deliver over 5 Gbits/year

的有为青年再接得历

0.5m

Weight < 100kg

4

Compact and Movable Ground Station

- ☑Smaller, lighter and cheaper (280 mm diameter, 100 kg)
- \square The sifted key rate is $\sim 2 \text{ kbps}$

The MEO-to-GEO Quantum Satellite

Focus on all-day quantum communications research and fundamental problems:

- ☑ Wider space scale
 - ☑ 10000-36000km (all over)
- ☑ Longer experiment duration
 - ✓ Form minutes to hours
- ☑ Breakthrough earth shadow limit
 - ☑ Generate Key 24 hours

The MEO-to-GEO quantum satellite

☑ Ultra static and stable

☑ Orbital transfer ability

Satellite platform

☑ Over 600 mm diameter

☑ Divergence angle:

 $< 3 \mu rad$

✓ Tracking accuracy:

< 100 nrad

- ☑ GHz entanglement source
- ✓ GHz decoy state

 QKD source
- ☑ Laser communication

Photon transmission

Quantum communication

Key Technology for MEO-to-GEO Quantum Satellite

Develop adaptive optics to ground station Breaking through the limitation of QKD only at night

Upgrade the Current Fiber QKD Network in China

More safer, greater distance, and wider coverage

MDI QKD

Twin-Field QKD

Quantum Repeater

High-speed MDI QKD with integrated silicon photonics Wei *et al.*, Phys. Rev. X 10, 031030 (2020)

511 km metropolitan areas: Chen *et al.*, Nat. Photonics 15, 570 (2021) 509 km with low loss fiber. Chen *et al.*, PRL 124, 070501 (2020) Fang *et al.*, Nat. Photonics 14, 422 (2020) Entanglement of two quantum memories over 22 km.

Yong et al., Nature 578, 240 (2020)

Upgrade the Current Fiber QKD Network in China

More safer, greater distance, and wider coverage

Lines	Longitudinal Backbone				
	Beijing- Shanghai	Beijing- Wuhan	Wuhan- Guangzhou	Extension of Shanghai-Hefei	
Length(km)	1979	1700	1400	1400	
Phase	Completed	Under Construction	Under Construction	Under Construction	

Lines	Transverse Backbone				
	Wuhan- Hefei	Guangdong- Hong Kong- Macao	Shandong	Jianghuai	
Length(km)	693	180+180	1	2200	
Phase	Completed	Under Construction	Under Review	Proposal	

National Quantum Backbone Network

Future Prospect

High precision time-frequency transfer network

4 magnitudes better than microwave scheme

Reading on the Earth license plates floating in Jupiter's orbit

- > Global quantum communication infrastructure → "Quantum Internet"
- ➤ Combining photons from distributed telescopes worldwide by quantum teleportation in space → Enormous spatial resolution

Nature 535, 478 (2016)

Future Prospect: Quantum Physics Vs. General Relativity

Ultra-high precision optical clocks + Large-scale quantum communication tech.

Long-term stability 10-21 (1s @ 10000 billion years)

Large-scale Bell test with Human-observer

Entanglement distribution between the Earth and Moon with China's future Moon landing project!

- > Ultra-high-precision optical frequency standard → Global new time reference
- > Space-based ultra-high-precision optical clocks holds promise for detecting gravitational waves and dark matter.

