Nanosecond machine learning with BDT for high energy physics

Stephen Roche*

Tae Min Hong

On behalf of all authors of <u>JINST 16 P08016 (2021)</u>

ICALEPCS October 21, 2021

https://whova.com/portal/webapp/icale 202110/Agenda/1923884

fwX is a tool that puts boosted decision trees on FPGAs for ultra-low latency real-time evaluation using minimal resources

- Published <u>JINST 16 P08016 (2021)</u>
- Preprint available on the arXiv: <u>2104.03408 [hep-ex]</u>
- Tutorial, links, and FAQ at: <u>fwX.pitt.edu</u>
- Git located at: https://gitlab.com/PittHongGroup/fwX

Overview

Four Sections

- Boosted decision tree introduction
- Motivation for putting BDTs on FPGAs
- Optimization
- Example problem

Machine learning method that separates classes (i.e., signal versus background) by cutting on variables

Example: this 3-variable event is classified as signal

Decision Forests

Many trees are trained independently and given weights (boosting)

• Event classified as weighted average score of all these trees

Motivation

Triggering at hadron colliders

- Two-level trigger systems at detectors such as ATLAS and CMS
- Level 1 trigger (L1) cuts down 40 MHz bunch-crossing rate to ~100 kHz using custom electronics
- High level trigger (HLT) reduces rate to 1-10 kHz using CPU farm

Do once:

- Train BDT in software
- Process trained forest with fwX, this optimizes for FPGA
- Load synthesized firmware on FPGA

In real time:

Use FPGA to evaluate/make inference of incoming events

Tree Flattening

Novel approach: "flatten" tree structure into grid

- Converts recursive problem into binning problem
- FPGA bins each variable independently in each direction
- Allows design to take advantage of parallelization
- Final bin location determines BDT score

Bit shift bin engine

Novel approach: localize data by bit-shifting

- Layers of bit-shifting to approximate bin location
- All combinatoric logic
- Final bin location determines BDT score

Firmware design

Novel approach: parallelize input variables and trees

- Bin engines used to bin each variable in parallel
- Look-up table used to find score for resulting bin
- Trees processed in parallel
- Scores for each tree combined

Other optimizations

Tree merging

Can merge trees by summing grids

Integer precision

 Can use floating point values or convert to integer precision to speed up evaluation

Other optimizations

- Remove trees that don't have an impact due to low boost-weight
- Remove cuts that are redundant due to merging

Example use case: Higgs identification

Goal: identify Higgs production in vector boson fusion (VBF)

- Strategy: identify events with a VBF jet pair
- Reject background

Attributes of VBF jet pair look different than QCD jets

Example use case: Higgs identification

Physics performance

 At same background rejection, accepts twice as many VBF events as our approximation of benchmark cut-based trigger

Example use case: Higgs identification

Firmware performance

Very low latency and minimal resource usage

Quantity	Value	
Latency	5 clock cycles (15.6 ns)	
Interval	1 clock cycle (3.125 ns)	
LUT	1.0%	
FF	< 0.1%	
BRAM	2.3%	
URAM	0	
DSP	0	

Latency and interval dependence

Latency depends on problem

- Scales with number of trees, depth of trees, and number of input variables
- For "reasonable" problems we can get very low latencies (< 10 ns)

Latency is independent of clock speed

None of our operations are clocked

Resource usage dependence

Also depends on problem

- Depends on same things as before, along with integer precision used
- For "reasonable" problems we can get very low resource usage (< 1%)

Conclusions and review

fwXmachina can implement BDT classifiers on FPGAs

- Novel approach to decision tree evaluation optimized for firmware
- Can provide low latency and minimal resource usage for some realistic physics problems
- Potential to allow for machine learning in FPGA-based level 1 trigger systems

Vector boson fusion Higgs production demonstrates example test case demonstrating reasonable problem

- Representative of problems that L1 trigger systems solve
- Shows that BDTs may be better than cut-based in some cases
- fwX can provide firmware evaluation within the latency and resource constraints of L1 triggers

Backup: latency vs interval

Latency- how long it takes to unpack the first box you put on the conveyor belt

Interval- how long it takes to put the next box on the conveyor belt

Backup: Currently supported

Software package

- Python version 3.x
- Tested on Linux machines, should work on other OS systems as long as ROOT is supported

Machine learning

- Binary classification with TMVA
- BDT
- Cut-based (not discussed in this talk)

Firmware

Xilinx Vivado HLS

Steve Roche

Backup: fwX vs hls4ml/Conifer

Another group does something similar

- We compare our results to theirs using same BDT forest
- Problem: electron vs photon in simulated calorimeter (see paper)

Parameter	FWXMACHINA	hls4ml-Conifer	Comments
ML training setup			
Training software	TMVA	TMVA	same
Physics problem	electron vs. photon	electron vs. photon	same
Training samples	from ref. [56]	from ref. [56]	same
No. of event classes	2	2	same
No. of training trees	100	100	same
Max. depth	4	4	same
No. of input variables	4	4	See figure 18
Other TMVA parameters	TMVA defaults	TMVA defaults	same
Nanosec. Optimization	Flattened & merged to 10	N/A	Unique to FwX
	final trees, without TREE		
	REMOVER OF CUT ERASER		
FPGA and firmware setup			
Chip family	Xilinx Virtex Ultrascale+	Xilinx Virtex Ultrascale+	same
Chip model	xcvu9p-flga2104-2L-e	xcvu9p-flga2104-2L-e	same
Vivado HLS version	2019.2	2019.2	same
Clock speed, period	320 MHz, 3.125 ns	320 MHz, 3.125 ns	same
Precision	ap_int(8)	ap_ufixed $\langle 10, 5 \rangle$	See text
BIN ENGINE	BSBE	N/A	Unique to FwX
FPGA cost			
Latency	3 clock ticks, 9.375 ns	15 clock ticks, 46.875 ns	-
Interval	1 clock tick, 3.125 ns	1 clock tick, 3.125 ns	same
LUT	1903, < 0.2% of total	$2.3\mathrm{M},192\%$ of total	See caption
FF	138, < 0.01% of total	$1.1\mathrm{M},44\%$ of total	-
BRAM 18k	8, < 0.2% of total	0	-
URAM	0	0	same
DSP	0	0	same

Backup: VBF identification problem

Vector boson fusion (VBF) Higgs production

- VBF is a known Higgs production mechanism
- Currently triggers exist that identify possible VBF events at Level 1

Two questions:

- Is it possible to improve existing L1 VBF triggers by using boosted decision trees?
- If so, can fwX be used to evaluate them on FPGAs under the strict timing and resource constraints necessary at L1?

Backup: VBF identification strategy

Background

QCD multijet

Training signal

- Higgs decay to neutrinos
- Neutrinos invisible to detector
- Only jets seen come from VBF pair

Testing signal

- Higgs decay to 4 bottom quarks
- Tests that classifier identifies VBF pair without getting confused by other jets

Backup: Classifier performance

For high enough integer precision, little to no loss in classifier performance

- Definition of "high enough" depends on problem
- In problem shown below, 8 bits is enough

Backup: Motivation and other literature

Goal: improve performance of Level 1 trigger systems

- Evaluate machine learning algorithms on customizable electronics
- Flexible packages to implement neural networks on FPGA exist (1804.06913, 2003.06308, 2101.05108, 2103.05579)
- Flexible package to implement BDTs on FPGAs exist (2002.02534)
- Our contribution: novel optimizations to implement boosted decision trees on FPGAs

