Renovation of the Trigger Distribution in CERN'S Open Analogue Signal Information System Using White Rabbit

Dimitrios Lampridis, CERN

ICALEPCS 2021 [THBR01]

21 October 2021

Outline

1 Background

- 2 System Architecture
- 3 Test Setup and First Results
- 4 Conclusions and Outlook

Dimitrios Lampridis, CERN

OASIS

Open Analogue Signal Information System

- A distributed oscilloscope.
- Monitor and correlate signals across the CERN accelerator complex.
- 5000+ analogue signals.
- 500+ multiplexed digitisers.
- 250+ triggers.
- Accessible in the form of a virtual scope GUI.

White Rabbit

- White Rabbit (WR) is an Ethernet-based network.
- It provides sub-ns synchronisation between connected nodes.

It is deterministic (upper-bound latency).

OASIS Trigger Distribution over WR

- Ongoing project to renovate the OASIS trigger distribution.
- New approach based on White Rabbit Trigger Distribution¹.
- Deprecate obsolete hardware.
- Improve performance and scalability.

Replicate a trigger pulse at destination(s) with fixed latency.
Increase pre-trigger acquisition buffer accordingly.
Dewind the buffer to the moment of the original trigger.

Rewind the buffer to the moment of the original trigger.

Current state of OASIS trigger distribution

- Timing events converted to triggers by timing receivers (CTRs).
- Triggers multiplexed by CTCs.
- Triggers resynced statically by CTRs and dynamically by CTCs.
- Dedicated CTC output channel and long trigger cable per digitiser.

OASIS WRTD: phase I

- CTCs and CTRs remain, to generate and resync triggers.
- Some CTC outputs selectively repurposed to drive TDCs.
- Digitisers at the other end triggered by FDs (or directly).
- Fixed latency set to 400µs during testing.

OASIS WRTD: phase I

- During a new connection request, OASIS server checks if the trigger is already generated for another digitiser.
- If yes, it finds the correct FD/WR-DAQ and programs it.
- If not, it first reserves a CTC output and programs the TDC as well.

OASIS WRTD: phase II

- Full deployment, no more CTCs.
- CTR outputs digitised directly by TDCs.
- Triggers still resynced statically by CTRs.
- Triggers resynced dynamically by new devices.

OASIS WRTD: phase III

■ No more TDCs to digitise triggers.

Produce WRTD events directly from the timing system.

Lab Test Setup

Lab Test Results

• OASIS VIEWER PRO (8.0.1-20210915-103335)			
File General Scope1 Scope2 Scope3 Expert Help		15/09/2021 1	2:05
● 】 ☆ ☆ PLS 】 == □ 外 豪 < □ 、		2 161202	
CPS:ZERO (3) 🔍 🔍	TWR.PX.SCY-TS ON		ON
	NO CLOCK	NO CLOCK	
	0	0	
	50us/div	200us	_
	1.5V	+ C	
	Channel [1]		Â
	Sensitivity	Offset	
	TWR.SCOPE01.CH01-AS		5
	1∨/div	0V	Ó
	TWR.SCOPE02.CH01-AS		φ
	1∨/div	-4∨	12
	Channel [4]		E
	Sensitivity	Offset	3-16
CPSZERO (3) @ TWR.PX.SC			ON.
	NO CLOCK	NO CLOCK	
	0	0	
	50us/div	200us	
	1.5V	+ C	
	Channel [1]		â
	Sensitivity		T
	TWR.SCOPE01.CH02-AS		10
	1∨/div	0V	00
	TWR.SCOPE02.CH02-AS		10
	1V/div	-4∨	-12
	Channel [4]		н
	Sensitivity	Offset	3-16
12:02:17 - Channel S in Scope 2: CONNECTED			-
azioziar - endinier o in ocope zi eonnee reb			_

Lab Test Results

Dimitrios Lampridis, CERN

Conclusions and Outlook

- OASIS is migrating its trigger distribution to a WR-based solution.
- New distribution scheme based on WRTD.
- Migration to be done in three phases.
- First operational deployments before the end of 2021.
- Full deployment of phase I in 2022-2023.
- Phases II and III will follow (est. 2024-2029).

Thank you for your attention!