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 multi language modular event-driven microservice middle-ware framework based on 
modern language standards

 backwards compatibility through implementations of established protocols
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Aggregation and processing of data is performed 
either using GNURadio based continuous streams or 
event based processing and aggregation.

The majordomo framework facilitates event processing 
using predefined or custom workers defined by handler-
callbacks and input/output domain-objects.

High-performance reflection-based Serialiser

 no interface description language (IDL), instead using reflection based approach
 self-documenting serialisation format and data structures
 integration of mp-units physical units library to prevent scaling or unit errors
 high performance using Unsafe in java and constexpr in c++

code example: c++ and Java domain objects. benchmark results: serialisation and de-serialisation of 
domain-objects using different serialisers.

Open and Lean Development

Goals and Architecture

 development as open source on public 
GitHub accepting PRs

 test suite, CI/CD, code quality tooling to allow 
high quality contributions

 small code footprint: e.g. serialiser (without 
tests)

–  Java 8431 LOCs
– C++ 1344 LOCs 

 low number of dependencies by leveraging 
standard library functionality 
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 multi language modular event-driven microservice middle-ware framework 
based on modern language standards [1]

 backwards compatibility through implementations of established protocols

Goals and Architecture
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Aggregation and processing of data is performed either 
using GNURadio based continuous streams[3] or event 
based processing and aggregation.

The majordomo framework facilitates event processing 
using predefined or custom workers defined by handler-
callbacks and input/output domain-objects.
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High-performance reflection-based Serialiser

 no interface description language (IDL), instead using reflection based approach

 self-documenting serialisation format and data structures

 integration of mp-units physical units library [4] to prevent scaling or unit errors

 high performance using Unsafe in java and constexpr in c++

code example: c++ and Java domain objects. benchmark results: serialisation and de-serialisation of 
domain-objects using different serialisers.
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Open and Lean Development

 development as open source on public GitHub 
accepting PRs

 test suite, CI/CD, code quality tooling to allow high 
quality contributions

 small code footprint: e.g. serialiser (without tests)
– Java 8431 LOCs
– C++ 1344 LOCs 

 low number of dependencies by leveraging 
standard library functionality 
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