
FAIR GmbH | GSI GmbH

A MODULAR OPEN COMMON MIDDLE-WARE LIBRARY FOR
EQUIPMENT- AND BEAM-BASED CONTROL SYSTEMS AT FAIR

Ralph J. Steinhagen, H. Bräuning, D. Day, A. Krimm, T. Milosic, D. Ondreka, A. Schwinn
GSI Helmholtzzentrum, Darmstadt, Germany

TUPV009

 multi language modular event-driven microservice middle-ware framework based on
modern language standards

 backwards compatibility through implementations of established protocols

20

Data Aggregation and Event Processing

...

Worker

Event Store

ROUTER PUB Radio REST ZeroMQ
HTTP serialised & cached property data

Majordomo Broker

Settings

... Worker
(setting management)

event
+payload

time

Source 1
via SUB, REST, ...

Event Store:
queue containing

deserialised domain objects

Source n

Timing
via DISH

Adapter
serialised→deserialised domain objects

<
ct

x>

m
at

ch
er

#1

(e
.g

.
so

u
rc

e
s1

,
2

 &
3

)

notifies

start aggregation

time-out→stop

accumulate data

Δt

partial data

complete data (late)

<
ct

x>

m
at

ch
er

#2

complete data
(stop)

(time-out)

reads past (historic) accumulated source events
adds own further post-processed events

Custom Sources
e.g. low-level driver
and/or IRQ handler

Aggregation and processing of data is performed
either using GNURadio based continuous streams or
event based processing and aggregation.

The majordomo framework facilitates event processing
using predefined or custom workers defined by handler-
callbacks and input/output domain-objects.

High-performance reflection-based Serialiser

 no interface description language (IDL), instead using reflection based approach
 self-documenting serialisation format and data structures
 integration of mp-units physical units library to prevent scaling or unit errors
 high performance using Unsafe in java and constexpr in c++

code example: c++ and Java domain objects. benchmark results: serialisation and de-serialisation of
domain-objects using different serialisers.

Open and Lean Development

Goals and Architecture

 development as open source on public
GitHub accepting PRs

 test suite, CI/CD, code quality tooling to allow
high quality contributions

 small code footprint: e.g. serialiser (without
tests)

– Java 8431 LOCs
– C++ 1344 LOCs

 low number of dependencies by leveraging
standard library functionality

References:
[1] A. Krimm and R. Steinhagen, “FAIR Common
Specification - Modular Open Common Middle-Ware
Library for Equipment- and Beam-Based Control
Systems of the FAIR Accelerators,” FAIR, Tech. Rep.,
2020. Available: https://edms.cern.ch/document/2444348

[2] P. Hintjens, “Majordomo Protocol RFC,” The ZeroMQ
Project, Tech. Rep., 2012. Available:
https://rfc.zeromq.org/spec/18/

[3] R. J. Steinhagen et al, “Generic Digitization of Analog
Signals at FAIR – First Prototype Results at GSI,” in
Proc. IPAC’19, Melbourne, Australia, 19-24 May 2019,
https://doi.org/10.18429/JACoW-IPAC2019-WEPGW021

[4] M. Pusz. (2020, Jan) P1935R2 – A C++ Approach to
Physical Units. [Online]. Available:http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2020/p1935r2.html

https://edms.cern.ch/document/2444348
https://rfc.zeromq.org/spec/18/
https://doi.org/10.18429/JACoW-IPAC2019-WEPGW021
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1935r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1935r2.html
https://github.com/FAIR-ACC/opencmw-java
https://github.com/FAIR-ACC/opencmw-cpp
https://github.com/FAIR-ACC

FAIR GmbH | GSI GmbH

 multi language modular event-driven microservice middle-ware framework
based on modern language standards [1]

 backwards compatibility through implementations of established protocols

Goals and Architecture

20

[2]

https://github.com/FAIR-ACC/opencmw-java
https://github.com/FAIR-ACC/opencmw-cpp

FAIR GmbH | GSI GmbH

Data Aggregation and Event Processing

...

Worker

Event Store

ROUTER PUB Radio REST ZeroMQ
HTTP serialised & cached property data

Majordomo Broker

Settings

... Worker
(setting management)

event
+payload

time

Source 1
via SUB, REST, ...

Event Store:
queue containing

deserialised domain objects

Source n

Timing
via DISH

Adapter
serialised→deserialised domain objects

<
ct

x>

m
at

ch
er

#1

(e
.g

. s
ou

rc
e

s1
, 2

 &
3

)

notifies

start aggregation

time-out→stop

accumulate data

Δt

partial data

complete data (late)

<
ct

x>

m
at

ch
er

#2

complete data
(stop)

(time-out)

reads past (historic) accumulated source events
adds own further post-processed events

Custom Sources
e.g. low-level driver
and/or IRQ handler

Aggregation and processing of data is performed either
using GNURadio based continuous streams[3] or event
based processing and aggregation.

The majordomo framework facilitates event processing
using predefined or custom workers defined by handler-
callbacks and input/output domain-objects.

FAIR GmbH | GSI GmbH

High-performance reflection-based Serialiser

 no interface description language (IDL), instead using reflection based approach

 self-documenting serialisation format and data structures

 integration of mp-units physical units library [4] to prevent scaling or unit errors

 high performance using Unsafe in java and constexpr in c++

code example: c++ and Java domain objects. benchmark results: serialisation and de-serialisation of
domain-objects using different serialisers.

FAIR GmbH | GSI GmbH

Open and Lean Development

 development as open source on public GitHub
accepting PRs

 test suite, CI/CD, code quality tooling to allow high
quality contributions

 small code footprint: e.g. serialiser (without tests)
– Java 8431 LOCs
– C++ 1344 LOCs

 low number of dependencies by leveraging
standard library functionality

References:

[1] A. Krimm and R. Steinhagen, “FAIR Common
Specification - Modular Open Common Middle-Ware
Library for Equipment- and Beam-Based Control
Systems of the FAIR Accelerators,” FAIR, Tech. Rep.,
2020. Available: https://edms.cern.ch/document/2444348

[2] P. Hintjens, “Majordomo Protocol RFC,” The ZeroMQ
Project, Tech. Rep., 2012. Available:
https://rfc.zeromq.org/spec/18/

[3] R. J. Steinhagen, R. Bär, A. Franke, A. Krimm, K.
Lüghausen, D. Ondreka, A. Schwinn, and M. Thieme,
“Generic Digitization of Analog Signals at FAIR – First
Prototype Results at GSI,” in Proc. IPAC’19, Melbourne,
Australia, 19-24 May 2019,
https://doi.org/10.18429/JACoW-IPAC2019-WEPGW021

[4] M. Pusz. (2020, Jan) P1935R2 – A C++ Approach to
Physical Units. [Online]. Available:http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2020/p1935r2.html

https://edms.cern.ch/document/2444348
https://rfc.zeromq.org/spec/18/
https://doi.org/10.18429/JACoW-IPAC2019-WEPGW021
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1935r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1935r2.html
https://github.com/FAIR-ACC

	Slide 1
	
	Slide 3
	Slide 4
	Slide 5

