THPV017

A Cloud Based Toolbox for Accelerator Controls Interfaces and Optimization

J. P. Edelen, E. Carlin, M. Keilman, P. Moeller, R. Nagler RadiaSoft LLC, Boulder, CO

A Browser Based workflow for Accelerator Controls

- User interface to control systems
 - Synoptic displays
 - Custom interfaces
 - Communicate directly with front ends or with high level applications
- High level applications / control scripting
 - Programs to monitor and adjust subsystems
 - Python / machine language scripts / ocelot / others
- Online models
 - Acquire machine parameters directly or through UI
- Real Time Systems
 - Often FPGA driven or other embedded system

Common current workflow for accelerator controls

Proposed workflow by integrating and consolidating into a single application

Lattice Construction

The Sirepo GUI for MAD-X supports a wide range of features

- Beamline and lattice component construction
- Layard construction and deconstruction
- Variables and high level parameterization
- TWISS command support
- Matching support
- Templates and implementations for PTC
- Comparison tools for TWISS and PTC results
- Import and export of simulations using sequence files

Top: Example lattice construction using MAD-X import. Here a sequence file is loaded for an existing lattice.

Left: Example lattice construction using MAD-x and component beamlines. Component beamlines are built via drag and drop of individual elements. These component beamlines can then be added to larger beamlines to build a full lattice.

Sample controls interface

- Build a lattice in MAD-X and use our controls application for optimization
 - Controls display is generated automatically
 - Provides scalar settings and readings
 - Magnet transfer maps can be specified via upload of a CSV file
- Beam steering programs available
 - Optimize the beam trajectory based on weighted desired beam positions
 - python optimization toolboxes and matrix based steering are implemented

		Monitors	^
Optimization Targets	Beam Settings	BPM1 BPMX1 BPMX1 BPMX1 BPMX2 BPMY1 BPMX2	Horizontal Monitor
Optimization Method Nelder-Mead v Monitor Name X [m] Y [m] Weight BPM1 0 0 0.1 BPMX1 0 0.1 0 BPMY1 0 0.1 0	Main Twiss Position Particle Proton Gamma 7.84		-20 0 20 x [µm]
BPMX2 0 0.1	QUADRUPOLE	× BPMY2 BPM2 Vertical Monitor Monitor	
BPM2 0 0.1 BPM2 0 0 0.1 Simulation Completed Elapsed time: 00:00:18 0 0 0	Name QUAD2 Current [A] -1.21698822898178346 K1 -6.00000 Amp Conversion Table (*.csv) K1 = $\frac{current[A] - charge[C]}{gamma-mass[kg], beta c[m/s]} \cdot factor Browsee No file selected. $		
Start New Simulation	Save Changes Cancel	-100 0 100 0 50 x [mm] x [µm]	

Machine learning with Sirepo Activait

Fit 3

