CERN Controls Configuration Service – Event-Based Processing of Controls Changes

B. Urbaniec[†], L.Burdzanowski, CERN, Geneva, Switzerland

Event-based processing of configuration changes

CCS and Controls system configuration

Controls Configuration Service

Device relations, OASIS Menus, CCM

Controls devices meta-data and device-property model, application specific configurations (i.e.: WRAP, Controls Console Manaaer

Server Layer

Accelerators Controls components

Presentation Layer

Fixed Displays, data reporting, GUI utilities

data logging, equipment access, Controls MiddleWare (CMW), data processing

NXCALS, UCAP, RBAC, CMW, OASIS

data acquisition subscriptions, device-property model metadata, authorisation scheme, device servers, OASIS connections and signals, UCAP signals

Equipment Access Layer FESA, DSF, Front-End Computers

Drivers, FEC Startup, FESA configuration

all the configuration necessary to start and run processes on the FECs in order to acquire the data or control underlying equipment.

The **Controls Configuration Service** (CCS) is a core component of CERN's Control system, serving as a **central point** for the **configuration of** all Controls sub-domains. CCS ensures that the data provided to other services is done in a coherent and consistent way.

CCS is used by a **diversified group of users**, including installation teams (configuring Controls hardware), equipment experts (configuring processes and applications), and Accelerator operators. The users interact with the service to verify or define appropriate configurations.

orchestrati

and

as

S

ar-write

High-level architecture of CCS

As a **core Controls service**, the CCS must exhibit a **high level of availability**. Even though CCS downtime does not directly impact beam operation, it severely limits the means to verify or to modify core system configurations.

> The data stored in CCS database (CCDB) may be accessed via a **dedicated high level web-based editor**: CCDE. At the same time the service also provides **advanced Java and Python REST APIs** which allow users to efficiently configure, modify and maintain configuration data in a **programmatic way**.

To provide the highest possible **availability** and quality of service, each CCS component is implemented with some degree of **redundancy**. Advanced **monitoring** and **notification** mechanisms continuously check consistency and status of all service **components** and send **alerts** in case of any abnormality.

<u>Quick facts:</u> CCDE avg users/day: 130 CCDA peek calls per minute: 10k

CCDE top browser: Firefox (> 60%) CCDB domain data: ~5GB (total 120GB)

The service is built around a **centralised** Oracle **database** server. To minimise downtime of the system and risks of negative impact to the users, the server is deployed in a cluster as 2 redundant nodes, providing **99.9%. availability**.

Event-based processing of configuration changes

Every change to Controls configuration may **impact** one or more other **Controls system** components. Due to the overall Controls **complexity**, manual adaptations in related subsystems to account for changes, are highly time consuming and error prone, and risk to result in **discrepancies** between different Controls sub-systems. It is therefore crucial, to capture changes, notify related services, and even trigger specific actions, in an automatic way.

Occurrences	Event
21k	Device migration (class change)
280k	Device attribute changed
100k	Device added
90k	Device deleted
250k	NXCALS subscription changed
360k	NXCALS subscription added
130k	NXCALS subscription deleted
Events produced in 2020	

Conclusions and future plans

Introduction of Event-Based Processing of Controls Changes allows to:

- reduce the system support due to automatisation of processes and better coherency
- decrease time when subsystems of Controls system are in desynchronised state
- speed-up propagation of changes between different parts of Controls system
- increase system stability due to automatic validations and simulations before each change
- plug new services in easy and coherent way
- incorporate user specific logic without modifications of core components

Future architecture

Evolution of device upgrade events

REFERENCES

- L. Burdzanowski et al, "CERN Controls Configuration Service - a challenge in usability", Barcelona, Spain, 8 - 13 Oct 2017, pp.TUBPL01
- 2. L. Burdzanowski et al, "The Renovation of the CERN Controls Configuration Service", Melbourne, Australia, 17 - 23 Oct 2015, pp.MOPGF006
- D. Jacquet et al, "LSA the High Level Application Software of the LHC - and Its Performance During the First Three Years of Operation", San Francisco, CA, USA, 6 - 11 Oct 2013, pp.thppc058
- J. Wozniak et al, "NXCALS Architecture and Challenges of the Next CERN Accelerator Logging Service", New York, United States, 5 - 11 Oct 2019, pp.WEPHA163
- 5. https://www.espertech.com/esper/esper-faq