MOPV036

Porting Control System Software from Python 2 to 3

A. F. Joubert, M.T. Ockards, S. Wai, SARAO, Cape Town, South Africa

MeerKAT radio telescope

Developed by South Africa as a precursor to the Square Kilometre Array

Array of 64 interlinked antennas, fully operational since 2018

48 antennas concentrated in the core area, approximately 1 km in diameter

8 km maximum baseline (longest distance between any two antennas)

13.5 m diameter main reflector, and a 3.8 m diameter sub-reflector per antenna
2.2 Thit/s combined data from all antennas

170 km of fibre connect to the central processing building in the Karoo, with the
maximum length being 12 km.

120k sensors managed by the control and monitoring
system

science & innovation

Department:
Science and Innovation
REPUBLIC OF SOUTH AFRICA Foundation | Astronomy Observatory

National Research | South African Radio

Yo,)
E:wnlnl
L) J

2 lesotho >
e Ay MeerKATTelescope: i

South/Africa

Google

Imagery 82021 NASA, Terraetrics, Map data ©2021 AfGIS (Pty) Ltd__South Affica_Terms _Privacy _Send feedback

.y : —
B WWWw.sarao.ac.za

The South African Radio Astronomy
Observatory (SARAQ] is a National Facility
managed by the National Research
Foundation and incorporates all national radio
B astronomy telescopes and programmes.
SARAO is responsible for implementing the
Square Kilometre Array (SKA] in South Africa.

Our issue

MeerKAT control and monitoring system software needs to be ported, 20+ packages

200Kk lines of
Python 2
code

200k lines of
Python 3
code

Python 2 end-of-life on 1 January 2020

_ Possible strategies

« Separate branches for Python 2 and Python 3
« Expensive to maintain

« Single source Python 2, autogenerate Python 3
+ Need “fixers” for 2to3 conversion
+ Python 3 code isn’t seen by developers
+ Need to verify autogenerated code

Milky Way galactic centre viewed with MeerKAT

« Single source Python 3, auto-generate Python 2
« Need to convert all to Python 3 first
* Need “fixers” for 3to2 conversion
* Need to verify autogenerated code Selected
Single source Python 2 and 3 compatible (wrapper) :
* Code will have some special cases |
* No autogeneration, so developers see the code that is used }

Wrapper:
python-future

https://python-future.org/

Work top-down
according to
dependency tree

o
i@
a

Owner
®
1
_—
—_— O ®
o—
[e—
— The Team
es——
— —
— —
—_— ——
— —
— — Fin.-hed Work
== in:
Product Sprint Sprint

Backlog Planning
Meeting

Backlog

Tried scrum, but too much
specialised knowledge required,
and estimation impossible

Switched to single
developer, focussed on
porting, plus one reviewer

*Review the repository to provide context for the developer

eDelete unused code and scripts to simplify the porting effort

Update CI

*Add python3 tests to Continuous Integration
sAllow failure

€€

Futurize
(python2)

eFuturize stage 1 (modernize python2 code only, no compatibility with python3)
*Auto code format (chance to clean-up, with Black code formatter)
eFuturize stage 2: use the python-future wrapper to add (broken) python3 support

Futurize
(python3)

sUpdate dependencies, fix conversion issues
*Get tests passing under python3

Update CI

Fail if python3 tests fail
*Publish python3 package

eDownstream packages still pass python2 tests
*System integration tests still pass

€<

Estimation is very
difficult.

No correlation with
lines of code in a
package

Progress has been |
made, but still require |
. a significant effort.

kSLOC remaining to be ported

kSLOC per week

4
n

Package size vs. Rate to port

- NN W
n o u o

=)

Porting progress: burndown chart

2019/02/04 2020/06/18 2021

—o—kSLOC remaining

2023/03/15 2024/07/27
Linear (kSLOC remaining)

. Conclusion

.

Porting a codebase is a significant
undertaking, and needs to be carefully
managed. Prioritisation and dedicated
resources are important.

Success is not guaranteed.

