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Abstract

Accurate prediction of longitudinal phase space and other
properties of the electron beam are computationally expen-
sive. In addition, some diagnostics are destructive in nature
and/or cannot be readily accessed. Machine learning based
virtual diagnostics can allow for the real-time generation
of longitudinal phase space and other graphs, allowing for
rapid parameter searches, and enabling operators to predict
otherwise unavailable beam properties. We present a ma-
chine learning model for predicting a range of diagnostic
screens along the accelerator beamline of a free-electron
laser facility, conditional on linac and other parameters. Our
model is a combination of a conditional variational autoen-
coder and a generative adversarial network,which generates
high fidelity images that accurately match simulation data.
Work to date is based on start-to-end simulation data, as a
prototype for experimental applications.

INTRODUCTION

Free-electron lasers (FELSs) are sources of ultra-short and
ultra-bright pulses of light, which are used to reveal the
dynamics of important processes across various scientific
disciplines [1]. For effective and efficient facility operation,
it is necessary to rapidly reconfigure and optimise different
setups to meet user needs. Machine diagnostics are essential
for this task, and while some measurements can be taken
non-invasively and on every shot, others are destructive to
the beam, relatively slow, or otherwise constrained. For
example, the longitudinal phase space (LPS) of the beam
is critically important for FEL performance but this is an
invasive measurement that can only be made at locations
with dedicated hardware. Simulations are commonly used
to supplement the experimental data; however, they can
be computationally expensive and often require significant
iteration to improve their match to experimental conditions.
Machine learning offers the potential to leverage the large
volumes of accessible diagnostic and simulation data to build
surrogate models that enable accurate modelling with real-
time execution, thereby delivering virtual diagnostics and
rapid optimisation of beam conditions on demand.

Artificial Neural Networks have shown great utility in
the generation of complex data. From synthesised speech
to faces of non-existent people, several architectures have
been developed to effectively generate artificial data that
is indistinguishable from the training data. Autoencoders,
autoregressive models, and generative adversarial networks
comprise the three main classes of these generative networks
and the focus of modern research.

* amelia.pollard @stfc.ac.uk

Feedback Control, Machine Tuning and Optimization

Autoencoders are an excellent choice for generating com-
plex and variable data in an unsupervised manner. Their
ability to condense inputs into a significantly lower dimen-
sional representation before reconstructing the input from
this representation provides a powerful method of learning
the key components of target images, such as input parame-
ters. Variational autoencoders [2] build on this to codify the
latent space representation as a series of probability distribu-
tions which can be further extended by making those distri-
butions conditional on input parameters. This Conditional
Variational Autoencoder(CVAE) model enables effective
learning of the parameterised generation of images.

Generative Adversarial Networks [3](GAN) represent the
current state-of-the-art approach to image generation and
function on a principle of adversarial learning. Adversarial
learning functions by one network attempting to generate
realistic data, while another network attempts to discern real
data from generated data. This technique enables image
generation with fidelity orders of magnitude higher than
that of generative networks alone, but it is prone to stability
issues and is highly sensitive to hyperparameter choices.

Our work combines a CVAE and a GAN into the CVAE-
GAN architecture [4] and uses a combination of these pow-
erful techniques to produce high-fidelity longitudinal phase
space graphs for arbitrary parameter configurations as a vir-
tual diagnostic for end users. We also demonstrate an ability
to search the space of LPS graphs for particular graphs as
drawn by an end user, allowing for highly customisable lon-
gitudinal beam profiles.

RELATED WORK

The first steps to incorporating image recognition into
particle accelerator control using convolutional neural net-
works were taken in Edelen et al. [5] and developed further
in Scheinker et al. [6]. Conversely, machine learning predic-
tion of longitudinal phase space from machine parameters
has been explored, with good results, as in Emma et al.
(2018 and 2019) [7, 8]. While these simple networks seem
to lead to artifacts and sub-optimal reconstruction of fine
structure details, more complex networks featuring convo-
lutional and upsampling layers do appear to provide some
improvement [9]. The use of additional information besides
machine settings, in the form of non-invasive shot-to-shot
spectral measurements, has also been shown to improve
the accuracy of LPS predictions [10]. Additionally, recent
work based solely on experimental data has demonstrated
LPS prediction at significantly higher resolution to previous
studies [11].
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METHODOLOGY

We used a dataset of longitudinal phase space images and
associated parameters, as described in [12] and briefly out-
lined here. This was generated from the results of previous
work, using a Multi-Objective Genetic Algorithm [13] to find
optimal beam characteristics on the XARA lattice [14]. The
XARA lattice is a possible upgrade to the existing CLARA
facility [15], using high-gradient X-band RF technology.
A diagram of the XARA lattice can be found in Fig. 1.
10,000 start-to-end simulations of the accelerator were gen-
erated using the simulation code ASTRA [16] (up to the
linac 1 exit) and Elegant [17] for the remainder. Using the
6D bunch distributions produced, LPS images were created
by calculating the maximum and minimum values of the
z-positions and beam energies for each individual distribu-
tion and binning the particles in a 2D histogram defined by
this region of interest (ROI) to create 100x100 pixel images.
Though not used in this study, another set of images was
generated for which the maxima and minima were taken
over all distributions, for a fixed ‘screen size’ (referred to as
non-ROI or fixed extent images).

Each example in the dataset consists of an 100 x 100 pixel
LPS image at a location immediately upstream of the undu-
lator line, 4 real values describing the bounds of the ROI in
the fixed extent, and 17 accelerator parameters describing
the phase and amplitude of the linacs, the laser heater factor,
the dechirper factor, and the bunch compression.In this work,
all fixed extent images shown were generated by placing the
ROI image in accordance with the bounds generated by the
network.
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Figure 1: Schematic layout of CLARA with the potential
XARA upgrade overlaid. The total length is approximately
90m. The LPS images used in this study were generated
at a location following the X-band linacs and before the
modulator undulators.

Following the approach taken in previous studies [7], we
began by developing a fully connected parameter to image
generative model as part of Maheshwari et al. [12]. A pa-
rameter to CNN generative model was also tried, which
performed poorly, generating approximations which were of
the correct scale but lacking a well-defined structure. This
work led directly to the development of this more complex
architecture.
We then developed a conditional variational autoencoder
model and experimented with CNN and DNN based gen-
erators to produce high quality images. However, as seen
in previous works, the generator showed a tendency to pro-
duce a great many artifacts and fine details were lost. We
therefore created a deep neural network which utilised a
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convolutional conditional variational autoencoder, with the
addition of a discriminator, resulting in a model known as
a CVAE-GAN (as shown in Fig. 2) [4]. A discriminator
endeavours to identify real and generated images. When this
is affixed to the generative model (the CVAE), the weights
of the discriminator are frozen and the generated images are
intentionally mislabelled as being real images. The resulting
error is then backpropagated through the generative network
to train the generator to produce images which would “fool”
the discriminator. This error is combined with an absolute
difference error metric between the input and output images,
as well as the Kullback-Liebler divergence constraint on the
latent space of the CVAE.

Hyperparameters were found by Bayesian optimisation to
minimise absolute difference over a validation set composed
of 10% of the total dataset. The network was trained utilising
90% of the dataset, with 10% held back for testing. The
Adam optimiser was used with a learning rate of 1.0x1073,
with the error function defined in Eq. (1). Note that Dy
represents the Kullback-Liebler divergence [18].

E(x) = D (N(O, D||P(x|p, 0, y))
+abs(x —X) (1
—(xqlog(%a) + (1 = xq)log(1 - %4))
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Figure 2: The model of the CVAE-GAN, with the encoder
highlighted in blue, the latent space layer highlighted in or-
ange, the decoder highlighted in green, and the discriminator
highlighted in purple. Note the additional 1x4 output layer
which generates the position of the region of interest in the
fixed extent image.

RESULTS

We found that the CVAE-GAN model allowed for the
real-time generation of longitudinal phase space graphs with
high verisimilitude to simulation. This therefore achieves the
stated goal of providing a virtual diagnostic of longitudinal
phase space that would allow operators to carefully choose
parameters to achieve specific bunch energy profiles.

Most notably, our technique delivers high quality repre-
sentation of fine-grain details as can be seen in Fig. 3. This is
a consequence of the application of the discriminator, which
constrains the generator to produce more realistic images
where more traditional error functions, such as absolute
difference, generally result in blurring of fine details.

Given that the forward pass of neural networks can be
run in linear time, this allows for the rapid sampling of
LPS graphs from the space. In combination with Bayesian
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Figure 3: A pair of examples from the LPS GUI showing
both the fixed extent and region of interest. Note the fine-
grain details of the region of interest image, which are gen-
erally lost in simpler models.

Ground Truth

Figure 4: Fixed extent images and ground truth from Elegant
simulations with the same parameters. Variations in the
position of ROI are due to scale differences in the output.

Significantly, the finer detail structure of the LPS graph is
strongly matched to the output of Elegant.

CVAE-GAN Output
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Optimisation, we can therefore perform a guided search for
image similarity with an LPS graph drawn by an operator, as
shown in the example in Fig. 5, to yield the required machine
settings. This feature is one part of a graphical user interface
(GUI) for the model, shown in Fig. 6.
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Figure 5: An example of the drawing interface with target
drawn by operator (right) and the resulting LPS graph (left)
which most closely matched the operator’s drawing. On a
mid-range laptop, this search took approximately 20 seconds.

CONCLUSION

Utilising the CVAE-GAN architecture allows for high
fidelity linear time virtual diagnostics of the longitudinal
phase space for arbitrary accelerator parameters. However,
expanding of the dataset to encompass a wider range of pa-
rameters significantly increases the quantity of data required
to provide an accurate surrogate model. In continuing this
research to expand this work to multiple screen locations
along the beamline and to a wider parameter space, we have
found that this increase in the generative range of the model
has led to common Generative Adversarial Network pitfalls
such as mode collapse and instability. We therefore conclude
that this technique, while extremely powerful, is also quite
difficult to implement reliably and care should be taken to
avoid such issues.

Future work will include the simultaneous generation of
LPS graphs for multiple points along the beamline, as well as
comparisons to real-world data using a transverse deflecting
cavity and potentially applying transfer learning using a
small quantity of TDC data to augment a larger quantity of
simulation data.
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Figure 6: LPS CVAE-GAN GUI showing an example configuration, the fixed extent of the longitudinal phase space graph,
and the region of interest which shows finer detail of the LPS distribution. Note the colouring of the labels above the sliders,
which indicates the sensitivity of the LPS graph to that parameter in this region, with green indicating stability and red
indicating significant impact from changes to this parameter.
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