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Abstract 
We have developed a machine-learning-based operation 

tuning scheme for the KEK e-/e+ injector linac (Linac), to 
improve the injection efficiency. 

The tuning scheme is based on the various accelerator 
operation data (control parameters, monitoring data and 
environmental data) of Linac.  

For the studies, we use the accumulated Linac operation 
data from 2018 to 2021.In this paper, we show the results 
on our R&Ds of, 1. visualization of the accelerator param-
eters (~1000) based on the dimensionality reduction, and, 
2. accelerator tuning using the deep neural network (DNN). 
In the latter R&D, estimation of the accelerator parameters 
using DNN, and the accelerator simulator based on the 
Generative Adversarial Network (GAN) have been studied. 

INTRODUCTION 
We have developed an operation tuning scheme for the 

KEK e-/e+ injector linac (Linac) [1]. The Linac accelerator 
is a 600m long injector linac to distribute electrons and pos-
itrons to four ring accelerators: the Photon Factory (PF), 
the PF Advanced Ring (PF-AR), the SuperKEKB Electron 
Ring (HER) and the Positron Ring (LER). The Linac ac-
celerator is capable of operating at up to 50 Hz in two 
bunches (96 ns apart), which is equipped with 100 beam 
position monitors (BPM), 30 steering magnets and 60 RF 
monitors. 

Though the precise beam tuning and high injection effi-
ciency are required, there exist several problems on the ac-
celerator tuning as: 1. A lot of parameters (~1000) should 
be tuned, and these parameters are intricately correlated 
with each other; and 2. Continuous environmental change, 
due to temperature change, ground motion, tidal force, etc., 
affects to the operation tuning. 

 To solve the above problems, we have developed, 1. vis-
ualization of the accelerator parameters (~1000) trend/cor-
relation distribution based on the dimensionality reduction 
to two parameters, and 2. accelerator tuning using the deep 

neural network, which is continuously updated with the ac-
celerator data to adapt for continuous environmental 
change.to adapt the environment changes.  

In this paper, we show the results on our R&D. For the 
studies, we use the electron beam data for Super KEKB in-
jection accumulated in 2018 Nov. - 2021 Jun. This beam 
data includes the following parameters. 
 500 operating parameters (Steering magnet) 
 732 environmental parameters  
In addition, we use the ratio of the upstream (SP_A1_M) 

and downstream (SP_58_0) charges of the accelerator as a 
quantitative measure of the injection efficiency of the ac-
celerator. 

VISUALIZATION OF THE ACCELERA-
TOR PARAMETERS 

In this study, we use dimensionality reduction with a 
Variational AutoEncoder (VAE) [2] as a visualization 
method of accelerator parameters. VAE is a neural network 
consisting of two networks: the encoder, which converts 
the input data into "latent variables" of arbitrary dimen-
sions, and the decoder, which reconstructs the input data 
from the latent variables. Here, VAE assumes that "latent 
variables" are normally distributed, so that latent variables 
for similar trend input data are closely distributed when 
they are plotted on a space. Using this property, we can vis-
ualize the accelerator parameters by dimensionally reduc-
ing them to two-dimensional "latent variables" and plotting 
them in a two-dimensional space. 

To check the visualisation performance by VAE, we cre-
ated an accelerator parameters dataset containing 1232 pa-
rameters (operating params + env params). Figure 1 shows 
the results of the visualisation of the accelerator parameters 
accumulated between 2018 Nov. and 2021 Jun. using VAE 
trained by 2018 Nov to 2021 May data. The output results 
are coloured according to the injection efficiency of the in-
put accelerator data.  

As a result of Figure. 1, the accelerator parameter dataset 
containing 1232 parameters is visualized by VAE with di-

 

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-WEPV010

WEPV010C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

640 Feedback Control, Machine Tuning and Optimization

 

† m20sa029@uv.osaka-cu.ac.jp 

# masako@osaka-cu.ac.jp  



mensionality reduction to two dimensions. And, the visu-
alisation results show that in the short term(~1month) the 
accelerator trend does not drastically change, but in the 
long term(>3month) accelerator trend vary over a wide 
range. 

Figure 1: VAE output (two-dimensional Latent variables) 
from the 2018 Nov to 2021 June accelerator data. VAE is 
trained using 2018 Nov to 2021 May data. The output re-
sults are coloured according to the injection efficiency of 
the input accelerator data. 

ACCELERATOR TUNING USING THE 
DEEP NEURAL NETWORK 

The operating environment of the accelerator is continu-
ously changing. In addition, the correlations between the 
parameters are complex. In this situation, to continuously 
adapt to the environmental changes to get the high injection 
efficiency, the environment driven DNN (Reinforcement 
ML) is a good candidate. However, to apply the Reinforce-
ment ML to the operation tuning, we need 1. Estimation of
the acc. parames using DNN, 2. realistic accelerator simu-
lator. In the following, we introduce these R&D.

 Estimation of the Acc. Parames using DNN 
 For the reinforcement learning, it is important to start 

from the optimized (the best) accelerator parameter value, 
so that ML doesn't need to search in wide parameter 
range.In addition, we need to obtain the relationship be-
tween efficiency and accelerator parameters, for the effec-
tive parameter optimization. 

Therefore, we have developed a method to estimate an 
injection efficiency using DNN with accelerator parame-
ters inputs, to assure to get the relationship between them. 

In this study, we designed a Regression-DNN that takes 
1232 accelerator parameters (operating params and env 
params) as input and outputs the injection efficiency. The 
implementation of the DNN is based on Tensorflow [3]. 

Evaluate the performance of DNN To evaluate the 
performance of DNN, we extract 150,000 events data from 
Linac data accumulated in 2018 Nov. - 2021 Jun. Note that 

the injection efficiency of the dataset is extracted to be uni-
formly distributed over 0.85. Out of 150,000 events, we use 
135,000 events for training and 15,000 events for valida-
tion. 

We trained and validated Regression-DNN on dataset 
described above.  As a result, the mean squared error 
(MSE) between the predicted injection efficiency and the 
real injection efficiency is 0.00030 for the whole data in-
terval. Figure. 2 shows injection efficiencies of predicted 
by DNN (orange) and real (blue), for 2020/11/30-
2020/12/07 evaluation data. Vertical and horizontal axis in-
dicate injection efficiency and date, respectively. 

Figure 2: Injection efficiencies of predicted by DNN (or-
ange) and real (blue), for 2020/11/30-2020/12/07 evalua-
tion data. Vertical and horizontal axis indicate injection ef-
ficiency and date, respectively. 

These results show that Regression-DNN can predict in-
jection efficiency. In other words, Regression-DNN can 
describe the relationship accelerator parameters and injec-
tion efficiency. 

Training DNN with past data   Figure 1 shows that 
2D latent value for 2021 Jun. is close to 2021 May. This 
indicates that the 2021 May accelerator data are similar to 
the 2021 Jun. accelerator data. So, using DNN trained with 
2021 May data, we may be able to predict the injection ef-
ficiency in 2021 Jun. To test our hypotheses, we create 
three datasets with different inclusion periods. Figure 3 
shows an overview of the three datasets. 

Figure 2: Overview of the datasets (1)-(3). 

Each dataset contains 135,000 events for training and 
15,000 events for validation. We trained and validated 
DNN on each dataset. As a result, the mean squared error 
of injection efficiency output by DNN trained on datasets 
(1)-(3) as validation data is 0.00038 (Dataset (1)), 0.00038 
(Dataset (2)), 0.00300 (Dataset (3)). Figure 3 shows the 
comparison between the injection efficiency predicted by 
DNN (Dataset (1) orange, (2) red, (3) green) and the real 
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incident efficiency (blue). Vertical and horizontal axis in-
dicate injection efficiency and date, respectively. 

The results show that the DNN trained with 2021 May 
data; dataset (1,2), can predict 2021 Jun. injection eff. In 
other words, in order to predict the injection efficiency with 
DNN trained on past data, it is necessary that the training 
data of DNN contains similar data to the trend of the period 
we want to predict. 

Figure 3: Predicted injection efficiencies for the 2021 June 
evaluation data, based on the DNN predictions with Da-
taset (1) to (3) (orange, red, and green), and the real opera-
tion injection eff.(blue). Vertical and horizontal axis indi-
cate the injection eff. and date, respectively. 

Accelerator Simulator Based on GAN 
For the reinforcement learning, it is dangerous to do the 

parameter optimization based on the actual operation with 
the real accelerator. Therefore, realistic simulator is neces-
sary for the pre-training of the actual reinforcement learn-
ing. 

In this study, we develop a method using GAN (Genera-
tive Adversarial Network) [4]. Generative Adversarial Net-
work (GAN) is a class of machine learning frameworks. 
Given a training set (real data), this technique learns to gen-
erate new data with the same statistics as the training set. 

GAN consists of two networks (Generator and Discrim-
inator) that compete with each other. The Generator is a 
network with noise data as input and new data with the 
same statistics as the training set as output. The Discrimi-
nator is a network with training set data(real) and output of 
Generator(fake) as input and discriminate between real and 
fake as output. By alternately training two competing net-
works, we can increase the similarity between the Genera-
tor output (fake data) and the training set (real data).  

Using this property, by training GAN on the accelerator 
parameters data, it is expected to be possible to reproduce 
the data with keeping the correlation between the parame-
ters. So, we verify whether the GAN trained by real data of 

the accelerator can generate data reproducing the correla-
tion between parameters. 

For GAN training, we create the following two datasets 
with different parameter configurations. 
 Dataset(a) 2params

Injection eff. + specific steering magnet param
 Dataset(b) 1233params

Injection eff. + operating params+ env params
Please note that, Injection efficiencies in the datasets are 

uniformly extracted. And, each dataset contains 540,000 
events for training and 60,000 events for validation. 

Training by Dataset(a)  We trained the GAN on the 
dataset (a), which consists of two parameters, the injection 
efficiency, extracted with a uniform distribution and spe-
cific steering magnet parameter (PY_32_4). Figure 4, 
shows a histogram of the magnet parameter (PY_32_4) re-
produced by this trained GAN, and the real data used for 
training   

Figure 4: Histogram of the specific magnet (PY_32_4) 
param. reproduced by GAN trained Dataset(b) (orange) 
and the real data (blue). 

In this case, from the results in Figure 4, we can see that 
GAN reproduces the characteristics (peaks, distribution) of 
real data by training. However, it is necessary to reproduce 
the correlation between the parameters as well as the char-
acteristics of the individual parameters. Therefore, we ex-
amined the correlation between the injection efficiency and 
the steering magnet parameters in the dataset by making 
two-dimensional histograms. The created two-dimensional 
histogram is shown in Figure. 5.
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Figure 5: Two-dimensional histogram of real data(a) and reproduced data(b). Vertical and horizontal axis indicate Injec-
tion eff. and steering magnet parameter value. 

From the results in Figure 5, we can see that GAN re-
produces the two-parameter correlation trend. However, 
the GAN output data has peaks that did not match the real 
data and does not cover the full range of the real data. 

Training by Dataset(b)  We trained the GAN on the 
dataset (b), which consists of 1233 parameters, the injec-
tion efficiency extracted with a uniform distribution, steer-
ing magnet parameters and environmental parameters. 
Figure 6, shows a histogram of the magnet parameter 
(PY_32_4) reproduced by this trained GAN, and the real 
data used for training.  

 

 
Figure 6: Histogram of the specific magnet (PY_32_4)  
param. reproduced by GAN trained Dataset(b) (orange) 
and the real data (blue). 

From the results in Figure 6, we can see that GAN re-
produces the characteristics (peaks, distribution) of real 
data by training. But we need to verify that the trained 
GAN is able to reproduce the correlations of the 1233 pa-
rameters, not just the individual parameters characteristics. 

Here, it is difficult to compare the real data with the repro-
duced data for the 1233 parameters. Therefore, we use the 
visualisation method with dimensionality reduction by 
VAE described above. Figure 7 shows two-dimensional 
histogram of the visualisation of the real data and repro-
duced data by GAN, using VAE trained by 2018 Nov to 
2021 Jun data. 

From the results in Figure 7, we can see that GAN out-
put data dose not reproduce the whole period of the real 
data. Such a result, where the GAN can only reproduce 
part of the data used for training, is a possible event in the 
training of GAN, called "mode collapse". 

SUMMARY 
We have developed a machine-learning-based operation 

tuning scheme for the KEK e-/e+ injector linac (Linac), to 
improve the injection efficiency.  

In this paper, we show the results on our R&Ds of, 1. 
visualization of the accelerator parameters (~1000) 
trend/correlation distribution based on the dimensionality 
reduction using VAE, 2. predicting injection efficiency us-
ing Regression-DNN, and 3. reproduction of accelerator 
parameters using GAN. 

Using the electron beam data for Super KEKB injection 
accumulated in 2018 Nov. - 2021 Jun, we show that 1. It 
is possible to visualize the 1232 parameters by dimension-
ality reduction to two dimensions using VAE; 2. It is pos-
sible to predict the injection efficiency of accelerators us-
ing Regression-DNN. The prediction with the past data 
which has the similar parameter features, is effective to 
improve the prediction accuracy; 3. Accelerator simulator 
based on GAN reproduces the overall parameters correla-
tion trend. On the other hand, GAN’s output data dose not 
reproduce the whole period of the real data due to the 
"mode collapse", and further improvement is necessary to 
use for the pretraining of the reinforcement learning for 
the accelerator tuning system. 
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Figure 7: Two-dimensional histogram of real data(a) and reproduced data(b). Vertical and horizontal axis indicate VAE 
2D latent value z [2] and z [1]. 
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