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Abstract
Accelerators and other large experimental facilities are

complex, noisy systems that are difficult to characterize and
control efficiently. Bayesian statistical modeling techniques
are well suited to this task, as they minimize the number of
experimental measurements needed to create robust models,
by incorporating prior, but not necessarily exact, information
about the target system. Furthermore, these models inher-
ently take into account noisy and/or uncertain measurements
and can react to time-varying systems. Here we will describe
several advanced methods for using these models in acceler-
ator characterization and optimization. First, we describe a
method for rapid, turn-key exploration of input parameter
spaces using little-to-no prior information about the target
system. Second, we highlight the use of Multi-Objective
Bayesian optimization towards efficiently characterizing the
experimental Pareto front of a system. Throughout, we de-
scribe how unknown constraints and parameter modification
costs are incorporated into these algorithms.

INTRODUCTION
Tuning accelerators to meet operational goals of a given

facility is a time-consuming task that limits valuable beam
time resources for experimental users. This process repre-
sents a difficult to solve optimization problem, where there
are many free parameters and limited, expensive to conduct
measurements available to diagnose target objectives. Accel-
erator optimization problems also exist in tightly constrained
parameter spaces where large regions of parameter space
prevent even simple measurements of the beam. Finally, due
to the complexity of accelerator systems, measurements are
often noisy and/or have large uncertainties.

Model based optimization methods have been shown to
speed up convergence of optimizing black box problems,
where derivative information about the target function is not
accessible, making routine operations faster and previously
impossible to solve problems solvable in realistic settings.
Of particular interest is the use of Bayesian optimization
(BO) techniques for solving optimization problems [1, 2]
including experimental optimization of accelerators [3, 4].
Bayesian statistical models aim to represent measurements
as probability distributions, instead of scalar values. This
naturally lends itself to characterizing experimental accelera-
tor measurements, which have inherent noise and uncertainty.
Bayesian optimization explicitly takes these uncertainties
into account when performing optimization, resulting in an
algorithm that is robust to noise (an issue faced by many
other types of algorithms) [5]. This method is especially
∗ rroussel@slac.stanford.edu

proficient at efficient global optimization, since the Bayesian
surrogate model encodes high level information about the
target function behavior (such as function smoothness), al-
lowing it to make accurate predictions about the function
with limited data sets, thus significantly improving optimiza-
tion performance over other methods.

Bayesian optimization consists of two elements, a statis-
tical surrogate model that makes predictions about a given
target function and an acquisition function which uses those
predictions to choose future points in input space to mea-
sure. The surrogate model is usually chosen to be a Gaussian
process (GP) [6]. This model treats the value of the target
function at each point in input space x as a random vari-
able taken from a normal distribution 𝑓 ∼ N(𝜇(x), 𝜎(x)2)
where 𝜇(x) is the mean and 𝜎(x) is the standard deviation.
Gaussian processes treat the joint probability distribution of
the function values at each point in input space as a Multi-
variate normal distribution, specified by a mean function 𝜇
and a covariance matrix𝚺. We encode the expected behavior
of the target function by specifying 𝚺 via a kernel function
𝐾 (x, x′) that describes how strongly function values at lo-
cations x, x′ are correlated with one another. A common
class of kernel functions, known as “stationary kernels", are
based solely on the distance between the two points, | |x−x′ | |.
We can then specify the expected smoothness of our func-
tion with a length-scale hyperparameter in specific kernels,
such as the radial basis function (RBF) or Matern kernels [6].
Once experimental data is incorporated into the model, it can
then be used to predict the function mean and corresponding
uncertainty everywhere in the input domain.

Once a model is generated, we can then specify an ac-
quisition function 𝛼(x) characterizes how valuable future
observations are as a function of input parameters. For exam-
ple, if we have high confidence in our model, we can choose
to make measurements where the predicted function mean is
at an extremum, thus heavily weighting “exploitation". On
the other hand, if we wish to improve our understanding of
the target function, we can place a high value on making
observations in regions of high uncertainty, thus reducing
the overall uncertainty of the model by heavily weighting
“exploration". The most popular acquisition functions for
single objective global optimization balances these two as-
pects, either implicitly using expected improvement over
the best previously observed function value [7], or explicitly
using an optimization hyperparameter [8].

In this work, we describe two acquisition functions that
are specifically tailored to solve accelerator control problems.
The first example describes “Bayesian exploration", an al-
gorithm that enables automatic, efficient characterization of
target functions, replacing the need for grid-like parameter
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scans. The second is Multi-Objective Bayesian optimization
(MOBO) which can be used to determine the entire Pareto
front of a multi-objective optimization problem, as is often
the case for control systems of large experimental facilities,
using serialized measurements. We describe experimental
demonstrations of each of these algorithms at two experi-
mental facilities, the Linac Coherent Light Source (LCLS)
and the Argonne Wakefield Accelerator (AWA). While our
demonstrations are focused on the use of these algorithms
in accelerator control systems, they can be easily used in a
variety of other large experimental physics control systems.

BAYESIAN EXPLORATION

Due to the complex and time-consuming nature of ac-
celerator diagnostics, characterization of beam response to
input parameters is often limited to simple, uniformly spaced,
grid-like parameter scans in one or two dimensions. This
limitation results from the poor scaling of grid-like scans
to higher dimensional spaces, where the number of sam-
ples needed grows exponentially with the number of input
parameters. Furthermore, when attempting to characterize
unknown systems it is often difficult to determine the ideal
parameters of a grid scan that would result in an efficient
and valid parameter scan.

The existence of tight constraints on which measurements
are viable further complicates this process. For example,
transverse beam size measurements on diagnostic screens
are limited by the screen size, which in turn, imposes limits
on the strength of upstream focusing magnet parameters.
Simulation studies or extra measurements are needed before-
hand to determine these limits. While these limits can be
easily determined for a single parameter experimentally, it
becomes infeasible to efficiently determine limits in higher
dimensional input spaces, as they are often correlated with
multiple parameters. Limitations such as these are shared
among many types of control and optimization problems [9].

Finally, it is desirable to prevent rapid changes in accelera-
tor input parameters during characterization. In some cases,
it is temporally expensive to make changes in parameters,
such as when mechanical actuators are used to change the
phase of accelerating cavities. In other cases, fast feedback
algorithms used in accelerator subsystems rely on adiabatic
changes in external parameters to maintain system stability.
Large jumps in parameter space can delay convergence of
these feedback systems to stability or worse, cause them
to fail entirely [10]. Practical experimental considerations
such as these must be considered when automated sampling
algorithms are used, which should strike a balance between
costs associated with changing input parameters and the
information gained.

To solve this problem, we developed an acquisition func-
tion to enable automated characterization of a target function
in an efficient manner [11]. The acquisition function is given

by

𝛼(x, x0) =𝜎(x)Ψ(x, x0)
𝑁∏
𝑖=1

𝑃𝑖 [𝑔𝑖 (x) ≥ ℎ𝑖] (1)

Ψ(x, x0) = exp
(
− 1

2
(x − x0)𝑇𝚺−1 (x − x0)

)
(2)

where 𝜎(x) is the standard deviation of the GP model, x0
is the most recently observed point, 𝚺 is a diagonal, posi-
tive semi-definite matrix chosen by the experimenter and
𝑃𝑖 [𝑔𝑖 (x) ≥ ℎ𝑖] represents the probability that the i’th oper-
ational constraint 𝑔𝑖 (x) ≥ ℎ𝑖 is satisfied. The terms of this
acquisition function are as follows.

The first term 𝜎(x) is used to highly value points where
model uncertainty is largest and has been shown to max-
imize information gain about the model [8]. When used
with a GP kernel that has separate length scales for each free
parameter in a process known as automatic relevance deter-
mination [6], this term will cause the optimizer to increase
sampling frequency along the dimension with the shortest
length scale, as seen in Fig. 1.

Figure 1: Plots showing Bayesian optimization sampling
patterns depending on the kernel length scale using 𝛼(x) =
𝜎(x). Blue points are initial samples and orange points are
determined via Bayesian optimization. (a) Length scales
for both [𝑥1, 𝑥2] are set to 1. (b) Length scales for variables
[𝑥1, 𝑥2] are set to [0.25, 1]. Reproduced from [11].
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Figure 2: Parameter values (in arbitrary units) as a function of sample index during Bayesian exploration along with sample
density histograms.

The second term Ψ(x, x0) is a proximal weighting term,
which biases the optimizer towards taking small steps in
parameter steps. Another viable way to achieve this effect
would be to place a hard limit on the maximum step size that
the optimizer can take by setting the acquisition function
to zero outside a given radius away from the last observed
point. However, this negatively impacts the “exploration" ad-
vantages afforded by Bayesian optimization. By specifying
a weighting that never reaches zero, we allow the optimizer
to travel large distances in input space if it predicts a high
potential value for the measurement.

Finally, the last term represents weighting due to con-
straining functions. For each constraint, we create a separate
GP model that is used to calculate the probability that a given
constraining function 𝑔𝑖 (x) satisfies 𝑔𝑖 (x) ≥ ℎ𝑖 where ℎ𝑖 is
a constant. By weighting the acquisition function by these
probabilities, it is less likely to propose points that violate
any of the constraining functions, without prior knowledge
of what those functions look like.

We conducted an experiment at the Argonne Wakefield
Accelerator [12] to characterize the horizontal beam size at a
diagnostic screen as a function of drive beam line parameters.
These parameters included a solenoid around the photoin-
jector (FS), a solenoid just downstream of the photoinjector
(MS) and three quadrupoles near the diagnostic screen (DQ4,
DQ5, DQ6). The measurement was constrained by an upper
bound on transverse beam size in both directions on the diag-
nostic screen and an upper bound on beam centroid distance
from the screen center. We started the optimizer at a point
in input space that satisfied the constraints and allowed it to
explore for 100 iterations, taking 5 samples at each step and
averaging the beam properties. At a repetition rate of 1 Hz,
100 iterations of the algorithm took less than 20 minutes,
averaging less than 12 s per sample.

A trace of the sampled points in input space during ex-
ploration is seen in Fig. 2. Many of the parameters (FS,

DQ4-6) did not have a strong effect on the bunch size over
the given domain, which is inferred from the length scales
of the fitted GP model for each parameter. As a result, most
of the samples are on the domain boundaries and midpoints
of each parameters’ domain. Also note that these results
imply that the next exploration run should happen over a
larger domain if technologically feasible. On the other hand,
we determined from its short length scale that the beam
size was strongly correlated with the strength of the second
solenoid (MS) relative to its input domain. Furthermore, we
observe that only a narrow set of values for this solenoid
satisfy the imposed constraints on the measurement. If we
had attempted to characterize this input domain with a grid-
like parameter scan, it is likely that a substantial number of
measurements would have violated the constraints. Instead,
our measurements using Bayesian exploration were valid
about 80 percent of the time and sampling density was much
higher for parameters that had strong correlations with our
target measurement.

MULTI-OBJECTIVE BAYESIAN
OPTIMIZATION

Many problems in accelerator physics optimization are
multi-objective, where we must determine points in input
space that optimally balance the trade-off between multiple,
competing objectives, also known as the Pareto front. A
popular set of techniques used to accomplish this are known
as evolutionary algorithms. These algorithms, such as Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [13]
or Multi-Objective Particle Swarm Optimization [14–16],
are based on the generation of a diverse collection of can-
didate solutions, which are then observed via simulation or
experiment, usually in a parallelized manner. The results
from each observation are then sorted into non-dominated
and dominated subsets. The non-dominated subset of can-
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didate solutions is used to produce the next “generation"
of candidate solutions using a stochastic heuristic, which
are then re-evaluated. The process is repeated over several
generations until the non-dominated set of observations con-
verges to a stationary Pareto front or the hypervolume has
converged to a maximum value. It has been shown that
these methods are well suited for solving accelerator design
optimization problems [17, 18].

However, these algorithms are poorly suited for online
accelerator optimization. Evolutionary type algorithms of-
ten rely on parallelized evaluation of the objective functions.
However, they become practically inefficient when restricted
to serialized evaluations, as is the case for online accelera-
tor optimization. This inefficiency rises from evolutionary
algorithms use of the binary classification metric of Pareto
dominance to generate the next generation of potential obser-
vation candidates. As a result, this metric does not guarantee
optimal expansion of the Pareto front, as it does not consider
the relative hypervolume improvement of individuals in the
non-dominated subset of candidates.

The Multi-Objective Bayesian Optimization (MOBO) al-
gorithm [19] on the other hand, maximizes optimization
efficiency by using an explicit calculation of the hypervol-
ume improvement as an acquisition function to select the best
candidates to expand the Pareto frontier. The hypervolume
improvement H𝐼 is defined as the increase in Pareto front hy-
pervolume by adding a new observation y (see Fig. 3). Each
objective is modeled using a GP surrogate model which can
be used to predict the hypervolume improvement as a func-

Figure 3: Cartoon of multi-objective optimization where
each objective is to be minimized. Multi-objective optimiza-
tion attempts to find a set of points known as the Pareto
front P that dominate over a reference point r and any other
observed points in objective space. The Pareto front hy-
pervolume H (shown in blue) is the axis-aligned volume
enclosed by the Pareto front and a reference point r. Mak-
ing a new observation y, that dominates over points in the
current Pareto front, leads to an increase in hypervolume
(shown in green), referred to as the hypervolume improve-
ment H𝐼 . Reproduced from [20].

tion of input parameters. By maximizing the hypervolume
improvement acquisition function, MOBO can determine a
single point that maximally increases the Pareto front hyper-
volume at every step when evaluated in a serialized manner,
making it ideal for online accelerator optimization.

The most common multi-objective acquisition function,
expected hypervolume improvement (EHVI), is analogous
to the popular single-objective expected improvement ac-
quisition function [21]. This acquisition function calculates
the average increase in hypervolume using the probability
distribution of each objective function from the surrogate
model. The EHVI acquisition function is formally defined
as

𝛼𝐸𝐻𝑉𝐼 (𝜇, 𝜎,P, r) :=
∫
R𝑃

H𝐼 (P, y, r) · 𝜉𝜇,𝜎 (y)𝑑y (3)

where P is the current set of Pareto optimal points, r is the
reference point, H𝐼 (P, y, r) is the hypervolume improve-
ment from an observed point y in objective space, and 𝜉𝜇,𝜎
is the multivariate Gaussian probability distribution function
with the GP predicted mean 𝜇 and standard deviation 𝜎 for
each objective. A downside of this acquisition function is
the calculation cost of determining the expected hypervol-
ume improvement in high-dimensional objective spaces. A
similar acquisition function, upper confidence bound hyper-
volume improvement (UCB-HVI) can be used as a cheaper to
evaluate substitute with similar performance to EHVI [22].

We demonstrated the use of MOBO on optimizing the
LCLS photoinjector [23]. Our goal was to determine the
ideal trade-off between minimizing both the longitudinal
bunch size 𝜎𝑧 and the vertical transverse beam size 𝜎𝑦 with
respect to three tunable parameters, the gun solenoid, a fo-
cusing quadrupole magnet and a skew quadrupole magnet.
The bounds of each free parameter were determined prior to
experimentation from operator experience. The longitudinal
bunch length was measured by a transverse deflecting cavity
in the horizontal direction. Beam size measurements were
conducted using optical transition radiation and statistics for
each measurement were calculated from 5 samples each.

We began by randomly sampling 20 points in input space,
producing the blue measurements in Fig. 4. We then used
MOBO, with the UCB-HVI acquisition function to perform
optimization for 20 iterations, initialized with data from
the random search, shown in red in Fig. 4. Within these
iterations MOBO was able to determine an approximate
Pareto front (shown in the inset) that drastically improves
over points found over random sampling. While this demon-
stration was a simple one, previous simulation results of op-
timizing the Argonne Wakefield Accelerator photoinjector
with 7 objectives and 6 free input parameters show signifi-
cant improvement over evolutionary algorithms commonly
used by the accelerator community [20]. Furthermore, we
also demonstrated that the same treatment of constraints and
proximal biasing as was used in Bayesian exploration could
also be incorporated into the MOBO acquisition function.
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Figure 4: Results from running random search and then
multi-objective Bayesian optimization to optimize the trade-
off between electron bunch length 𝜎𝑧 and transverse beam
size 𝜎𝑦 for the LCLS photoinjector. Free parameters in-
cluded the gun solenoid, a focusing quadrupole and a skew
quadrupole. Error bars denote 1𝜎 error for each measure-
ment due to jitter. Inset: Approximate Pareto front (PF) after
20 MOBO iterations.

Xopt: EASILY ACCESSIBLE
IMPLEMENTATION OF ADVANCED

ALGORITHMS
Using these algorithms on novel problems can take a

significant amount of set-up and training to be success-
ful. To reduce the upfront costs of using these and other
complex algorithms for experimenters we have developed a
flexible framework Xopt [24] for connecting advanced op-
timization algorithms to experimental control systems or
simulations. Users need only to specify an algorithm by
name and a python function that handles evaluation of tar-
get functions. Customization of optimization algorithms is
also easily done, although their default configurations have
been set to handle most problems off the shelf. Xopt has
been used to both control the AWA accelerator and dispatch
parallelized simulations on the Cori high performance com-
puting cluster at NERSC [25]. The code is freely available
at https://github.com/ChristopherMayes/Xopt.

CONCLUSION
In this work we have shown that Bayesian techniques can

be used to efficiently characterize and optimize accelera-
tors. They can navigate tightly constrained systems without
prior knowledge regarding those systems. Furthermore, they
can be modified by proximal biasing factors which promote
adiabatic changes in controllable parameters, a requirement

for efficient and stable optimization of large experimental
systems.
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