
INTRODUCING PYTHON AS A SUPPORTED LANGUAGE
FOR ACCELERATOR CONTROLS AT CERN

P. Elson, C. Baldi, I. Sinkarenko, CERN, Geneva, Switzerland

Abstract
In 2019, Python was adopted as an officially supported

language for interacting with CERN's accelerator con-
trols. In practice, this change of status was as much prag-
matic as it was progressive - Python has been available as
part of the underlying operating system for over a decade
and unofficial Python interfaces to controls have existed
since at least 2015. So one might ask: what really changed
when Python adoption became official?

This paper will discuss what it takes to officially sup-
port Python in a controls environment and will focus on
the cultural and technological shifts involved in running
Python operationally. It will highlight some of the infra-
structure that has been put in place at CERN to facilitate a
stable and user-friendly Python platform, as well as some
of the key decisions that have led to Python thriving in
CERN's accelerator controls domain. Given its general
nature, it is hoped that the approach presented in this pa-
per can serve as a reference for other scientific organisa-
tions from a broad range of fields who are considering the
adoption of Python in an operational context.

INTRODUCTION
The Python language, and specifically the cPython im-

plementation for which this paper concerns itself, has one
of the largest and fastest growing developer communities
of any programming language [1]. It has been jokingly
described as “the second best programming language for
anything” [2] on the basis of its ability to adapt to a broad
array of problems, including domains of particular interest
to accelerator controls such as system automation, data
analytics & machine learning, web services, and graphical
user interfaces (GUIs). This flexibility comes less from
the “batteries included” Python standard library, and is
more a reflection of a rich suite of third-party packages
available from the Python Package Index (PyPI).

CERN’s Accelerator & Technology sector, referred to
as simply “accelerator sector” in this paper, is responsible
for the operation and exploitation of the whole accelerator
complex, including the LHC, and for the development of
new projects and technologies [3]. Python has been in use
in the accelerator sector for a number of years, solving a
diverse set of problems including fundamental physics
simulations, gathering and analysis of data for machine
development (MD) studies, rapid prototyping of services,
GUI applications, and much more. For high-level opera-
tional accelerator controls at CERN, Java was the only
supported programming language until the adoption of
Python in 2019. The growth of Python has meant that
more people are joining CERN with prior Python experi-
ence, and the simplicity of the language is compelling for

the large user base of domain specialists for whom soft-
ware development is a tool to achieve a specific task
rather than being the main focus of their work.

Promotion of Python to “supported” status includes the
provision of a software infrastructure to allow the opera-
tional 24/7 running of Python for mission-critical high-
level accelerator controls, as well as infrastructure, such
as tooling and a support service, to aid with effective de-
velopment of such applications & services. Much inspira-
tion was drawn from the existing Java service for acceler-
ator controls, though to directly emulate the Java experi-
ence in Python would be to suffer the worst of both
worlds and to risk missing the advantages of Python ad-
option. Therefore, a key objective was to preserve the
spirit of Python in the service provided.

The objectives of this paper are to outline some com-
mon practices observed before the adoption of Python; to
highlight some of the idiomatic Python practices that
should be preserved; and at a high level, to present some
of the infrastructure put in place to facilitate the use of
Python in the accelerator sector at CERN. With this, it is
hoped that other scientific organisations may be able to
identify existing practices and potential areas of improve-
ment in their own journey to bring Python into an opera-
tional context.

As a reflection of the computers in use for high-level
controls in the accelerator sector, this paper predomin-
antly focuses on x86-64 architecture, variants of Linux
operating systems (OS) such as CentOS, and bare-metal
deployments to machines which are often multi-purpose
and multi-user.

A TYPICAL PYTHON STARTING POINT

Python Already in Use for Many Years
Python isn’t new, and is almost certainly in use in most

medium to large scientific organisations today. Typically
installed by default in Linux-based operating systems, the
barrier to first use of Python is relatively low – scripts can
be executed directly by the Python interpreter for a rapid
and iterative development experience. As they develop,
re-use of functions and other definitions by gathering
scripts together into a library of modules becomes desir-
able. Historically, this was achieved by setting the
PYTHONPATH environment variable to point to a direct-
ory of packages for consideration in the Python import
machinery. At the same time, it is common to want to
make use of the rich set of 3rd party, open-source soft-
ware (OSS) Python packages. On a machine dedicated to
a particular task, it is likely that the OS package manager
will suffice for the most popular libraries, but eventually

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV040

MOPV040C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

236 Software Technology Evolution

it is inevitable that one or more of the 300,000+ packages
on the Python Package Index (PyPI) [4] is not available,
at which point using the Package Installer for Py-
thon (pip) becomes essential.

A common solution to minimise the need for user in-
stallations is to provide a dedicated, feature complete,
software stack, such as the Anaconda Python distribu-
tion [5]. Indeed, in the CERN accelerator sector a number
of such distributions existed, yet the need to augment the
environment with extra packages using pip remained.

Pip and Virtual Environments
Whilst pip is not part of the standard library, it is con-

sidered the de-facto package manager for Python and is
the basis for a number of other popular Python tools such
as tox, venv and poetry. This effectively makes pip an es-
sential tool for everyday Python development.

The pip package provides a command-line tool from
which other packages may be installed. The default file
location used by pip when installing packages is the same
location as where pip itself is installed. As a result, by de-
fault the installation of a package using pip requires user
permissions of at least those of the user who installed pip
in the first place. For Python & pip installed through the
OS package manager, it is common, yet highly discour-
aged [6], to see the use of “sudo pip install” to grant pip
sufficient privilege to install the packages into the system
prefix. A common alternative solution is to request that
pip installs packages into the “user site-packages” loca-
tion found in the user’s home directory. This location is
typically included in Python’s import search path, there-
fore both solutions result in packages being made globally
available by default for all subsequent Python invoca-
tions. This means that the behaviour of an entirely inde-
pendent Python application or service can be accidentally
changed, without it itself having been modified. At
CERN, since user home directories are on network moun-
ted filesystems, the user site-packages location can impact
applications running on different machines under the
same user, and this in particular was found to be a com-
mon source of application instability.

The popular approach to avoid the global effect of pip
installation is to use a virtual environment. Virtual envir-
onments can be created with the standard library “venv”
package. A virtual environment is a prefix directory con-
taining a link back to a “base” Python executable, and
into which Python packages can be installed. In this way
it is possible to have many virtual environments for a
single base Python installation. When pip is installed in a
virtual environment, packages can be installed without a
global effect upon other Python invocations, and the en-
vironment is therefore considered “isolated”. By design, it
is possible for virtual environments to be created by users
who do not have permission to write to the base prefix,
thereby giving a clear path to allow a centralised base Py-
thon installation which can be extended by users through
the use of virtual environments.

RUNNING PYTHON OPERATIONALLY

Advantages of Modules over Scripts
Whilst Python is an interpreted language, and Python

script execution is undoubtedly the simplest way of run-
ning Python code, there are a number of advantages of
running modules rather than executing scripts. When run-
ning a script:

• The directory containing the script is put on the
Python path, with a higher precedence than any
other directory, including that of the standard lib-
rary. This can easily result in “name shadowing”
and accidentally replacing parts of the standard
library and third-party packages.

• There is no standard mechanism for sharing
scripts (e.g. they can’t be installed with pip), and
no mechanism for declaring their dependencies.

A further observation is that scripts tend to encourage
big blocks of linear code, with little factorisation and lim-
ited code reuse. For example, it is common to see a large
directory of unmanaged scripts which each have subtle
variations of one another. One desirable aspect of reuse,
beyond the obvious ability to maintain functionality in a
single place, is the ability to systematically test function-
ality through tools such as pytest. Whilst possible to write
modules with exactly the same limitations as scripts, there
is a much clearer consensus that Python modules should
avoid the import-time behaviour in this way [7], and as a
result, modules gathered into packages tend to be better
equipped for effective code re-use.

As part of the guidelines developed for Python in the
accelerator sector it was therefore recommended that the
creation of packages, which are a collection of modules
under a namespace, be favoured over the creation of col-
lections of scripts. The immediate benefit to the user is
that code can be easily re-used and tested, with declared
dependencies being automatically installed alongside the
code. Structurally, it enables relative imports in order to
access sibling modules, and it avoids the need for later
migration to a package structure as the code evolves.

The efficacy of this recommendation is hard to quantify
in general, and strictly enforcing such a policy would be
to the detriment of the flexibility that Python brings. Des-
pite this, all known operational Python applications used
in the CERN accelerator control room are deployed and
run as packages in this way.

The Acc-Py Base Environment
A single, common, software stack containing all Python

packages suffers with the problem that the software can-
not be updated for one project without risking it breaking
for another. When managing such a software stack, either
the whole stack must be versioned such that newer itera-
tions can be released without changing existing releases,
or packages can be added but practically never removed

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV040

Software Technology Evolution

MOPV040

237

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

nor updated. From a developer perspective, the delay to
have packages added to the stack inhibits productivity,
and as a result, a mechanism to extend the stack locally is
essential.

Since virtual environments have become a fundamental
part of everyday Python development, they were the pre-
ferred approach in the accelerator sector in order to enable
pip-based installation of both user-developed and third-
party packages.

With the ability to extend a Python distribution through
pip, choosing which packages should be in the base distri-
bution is brought into focus. Providing a package in the
base distribution has the advantage of guaranteeing that
all applications use a consistent version and thereby in-
creasing the chance that tools are able to interoperate. It
was concluded that in general this advantage did not guar-
antee consistency in practice, and that the additional cost
of maintaining an extensive base distribution was not jus-
tified. As a result, in the accelerator sector base distribu-
tion, also known as the Acc-Py base, the decision to in-
clude as few packages as possible was made. The pack-
ages provided today are limited to those which are hard to
pip install in an effective manner, either because they
need machine-specific optimisations or specific compila-
tion options. There are currently just two such packages in
the Acc-Py base distribution: numpy and PyQt5.

CERN’s accelerator operating schedule, typically a 3-4
year physics run followed by a 2-3 year shutdown, re-
quires relatively long periods of stability between upgrade
periods. The lifetime of a particular Python version is
defined at a maximum of 5 years [8], meaning that a Py-
thon version ready to be used from the end of a shutdown
period is likely to reach end-of-life before the end of an
operational run. This is a key consideration for exposed
services, such as web applications, which must, as a res-
ult, be re-released on a frequent basis in order to pick up
security patches of Python and third-party libraries. The
majority of Python usage in CERN’s accelerator sector,
however, is related to data analysis and GUI applications.
For these cases, the biggest impact of Python’s end-of-life
is that key third-party dependencies will gradually phase
out their own support for ageing Python versions, for ex-
ample Numpy Enhancement Proposal 29 [9] makes clear
the intention to limit support within fundamental libraries
such as numpy, matplotlib and scikit-learn for older ver-
sions of Python. This paints a clear picture that Python is
a tool which can be useful for its ease and speed of devel-
opment, but that there is an additional maintenance cost to
be considered over the time frame of CERN’s accelerator
schedule to ensure that an application or service is adap-
ted as new versions of Python and third-party libraries are
released.

In order to facilitate this adaptation to newer Python
versions, the Acc-Py base distribution has been designed
to allow side-by-side installation with other Acc-Py base
versions. Only at the end of an accelerator run will older
versions be deprecated and removed, thereby giving ap-

plication owners the freedom to choose the most appropri-
ate time to adapt their code to a later version. Since no old
versions are removed during a run, it can be guaranteed
that a correctly isolated application which works at the
start of an operational run will continue to work until the
end of a run, but no such guarantees can be made for ap-
plications across multiple runs.

Whilst possible to install the base distribution on indi-
vidual machines, the primary mechanism to deliver the
distribution to all machines in the accelerator sector is via
a shared network mounted disk. One major advantage of
this approach is that deployed distributions are the same
on all machines, and that updates are instantly available.
When compared to a traditional local disk installation,
downsides include that the network disk is a single point
of failure, and that the added network latency could im-
pact Python start-up time detrimentally. In practice, it has
been found that having a single network location is a
pragmatic approach and that the consistency across ma-
chines is particularly useful.

Tracing Python Startup
To provide an overview of how the various Python dis-

tributions are being used, Python start-up logging has
been added to the Acc-Py base distributions. For each Py-
thon invocation, a centralised log entry is generated con-
taining essential information including username and
start-up time, as well as the packages installed in the en-
vironment. Currently up to 40,000 logs are received per
day, providing a vital window into Python usage, supply-
ing invaluable information when providing support, and
highlighting areas of potential improvement to the under-
lying service.

Adding tracing to an existing service is generally seen
unfavourably due to natural fears of an invasion of pri-
vacy. Doing so also introduces extra work in the Python
startup, this fact also limits what can be reasonably traced.
Therefore the general advice for those wishing to add Py-
thon startup tracing such as this, is to plan on providing
the capability early in the adoption process.

An Internal Package Index and PyPI Proxy
When relying on pip for important work, it is con-

sidered good practice to run a PyPI proxy in order to en-
sure that any downtime of PyPI does not result in loss of
productivity, or a loss in ability to deploy applications and
services at key moments [10]. Furthermore, the computer
network used for accelerator control at CERN prohibits
internet access, providing extra motivation for having an
internal PyPI proxy. As well as the ability to install public
packages from PyPI, it is desirable to allow the installa-
tion of internal packages through pip. To solve both of
these requirements, a Sonatype Nexus instance was in-
stalled. A package repository dedicated to internal releases
and a PyPI proxy repository were created. These were
then grouped together to form a single user-facing virtual
repository.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV040

MOPV040C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

238 Software Technology Evolution

The fact that Python packages share a single global
namespace is a cause of increasingly obscure and often
comical package names on PyPI. Whilst the addition of a
concept similar to Maven’s groupId would help alleviate
this, the algorithm used to group together two repositories
into one is an important detail not to be overlooked from
both a usability and security perspective [11]. In this spe-
cific detail, the Python Packaging Authority’s devpi pack-
age is considered to be the reference implementation,
against which Nexus has been found to fall short [12].
This is further exacerbated by the fact that pip itself is
able to group together multiple repositories, but does so in
an undefined and unexpected manner [13].

Once the package index is set up, pip can be
pre-configured to use the package index with no need for
further user intervention. For the Acc-Py base distribution
and subsequently created virtual environments, configura-
tion is done on a per-installation basis. One subtle and un-
expected source of behaviour relating to this is that a suit-
ably configured base distribution does not result in an
equivalently configured virtual environment [14]. A patch
of venv, the standard library package for virtual environ-
ment creation, in the Acc-Py base distribution was needed
in order ensure that the configuration was copied into
newly created virtual environments.

Along a similar line, the version of pip installed in the
base distribution is not the determining factor for the ver-
sion of pip in a newly created virtual environment. In-
stead, the version is encoded into the “ensurepip” stand-
ard library package, which is fixed at Python release time.
Again, further patching of the Acc-Py base distribution
was essential to ensure that modern versions of pip are be-
ing used in virtual environments.

Development and Deployment Tooling
In order to help users work efficiently and adopt best

practice in Python development, a suite of development
tools were created. This includes a tool to quickly set up a
new Python package, with a well-defined project struc-
ture, and a placeholder for tests, sphinx-based documenta-
tion and GitLab-based continuous integration configura-
tion.

In addition to the development tooling, a tool to deploy
Python applications in a consistent and repeatable manner
was developed. The tool, named acc-py-deploy, is com-
parable to pipx [15] in that applications are considered to
be an extension of a Python package which can be in-
stalled into isolated virtual environments for later execu-
tion. Much like the poetry package [16], acc-py-deploy
provides a mechanism to “lock” floating dependency ver-
sions into fixed versions. In the case of acc-py-deploy,
this includes special behaviour to lock transient Java de-
pendencies being used through JPype [17] such that an
application may be deployed consistently as a virtual en-
vironment without the risk of dependencies differing
between development and production. Deployed applica-
tions are run in full isolation mode, with both home-dir-

ectory-based user site-packages and PYTHONPATH dis-
abled. A unique feature of acc-py-deploy is its integrated
ability to elevate to a dedicated service user for the pur-
poses of deployment to a centralised network mounted
location. In this way it is possible to have a common ap-
plication deployment repository, with individuals able to
manage the deployment of their own applications, but
without needing to grant users direct write access to the
installation directory. These features provide a strong
guarantee that the application is deployed repeatably and
consistently, and that the execution of an application is
run in a way which avoids common user or environmental
configuration issues.

The uptake of acc-py-deploy has been strong, with over
50 deployed applications in production in its first 12
months. The previously common issue relating to unpre-
dictable application deployment and execution has been
eradicated and has been replaced by a reliable and user-
friendly operational experience.

PYTHON ADOPTION PRACTICALITIES

Fostering and Supporting a Community
The adoption and centralisation of Python for acceler-

ator controls presents an opportunity to bring together a
broad community with a common interest in the Python
language and associated tooling. Regular community
meetings are therefore arranged in order to provide a
space to share news, knowledge and experiences relating
to Python. Although the effort to coordinate contributions
is relatively high, these meetings have been an invaluable
medium for dissemination of key information, and they
are an effective way to enhance Python skill across the ac-
celerator sector.

The addition of a centralised support service is a funda-
mental part of officially adopting Python in the acceler-
ator sector. Support includes resolving operational issues
quickly and efficiently, as well as providing guidance to
users developing software with Python. Prior experience
has shown that providing first-rate and highly individual-
ised guidance through a Python support channel can lead
to requests reaching above-and-beyond the scope and ca-
pacity of a centralised support service. In an effort to
foster a greater sense of community, and to mitigate
against over individualising support, a community-centric
chat space was created, into which questions and discus-
sion is encouraged. Although a simple solution, the uptake
has been excellent, and the sense of an active community
comes across strongly. Indeed, it has often been the case
that the community have been able to efficiently support
one-another directly.

Centralisation of Pre-existing Functionality
When a community of users lack the tools needed to

achieve a particular task, and there exists no service from
which to request such tools be developed, it is common to
see domain-specific solutions being created by users.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV040

Software Technology Evolution

MOPV040

239

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Whilst these tools are typically not designed for general
purpose use, they provide invaluable insight into specific
use cases.

In some cases, these solutions become popular amongst
users and should be adopted for centralised support and
maintenance. In the accelerator sector, one such tool,
PyJapc, was developed by domain specialists in order to
conveniently interact with the accelerator control system
during machine development (MD) studies. The library is
technically interesting as it directly bridges to the Java
API for Parameter Control (JAPC) library, yet provides a
less general API well-adapted for the use case at hand.

The centralisation of such tooling faces the risk of los-
ing the strong user focus and potentially disenfranchising
the original authors if the adoption is not done sensitively
and pragmatically. In the case of PyJapc, whilst neither
perfect nor general, priority was given to ensuring the ex-
isting behaviour was well-maintained, tested, and docu-
mented. Only after becoming extremely familiar with the
code through bug-fixing and minor enhancements did lar-
ger API redesigns become a focus of effort. In turn this re-
spect for what already exists buys credibility when pro-
posing future changes, and it is hoped that this will ulti-
mately lead to improved user uptake of future solutions.

Building-Out New Functionality Quickly
The breadth and depth of existing Java infrastructure

for accelerator controls made Python adoption all the
trickier, as replicating the infrastructure developed over
decades of effort was neither practical nor efficient for the
adoption of Python. Instead, emphasis was given to creat-
ing packages which bridge to existing implementations
written in other languages.

For simple RESTful APIs with OpenAPI or Swagger
definitions, openapi-generator was used to generate Py-
thon bindings. Some post-processing of generated code
was added in order to improve code layout and to pro-
grammatically inject type annotations for an improved
static analysis experience. Whilst runtime bindings would
have been possible due to Python’s highly dynamic
runtime, it was found that the well-defined types from
generated code result in a superior API, with support for
convenient static analysis and auto-completion in an in-
tegrated development environment (IDE).

When exposing existing Java libraries, the binding
technology chosen was the JPype package [17]. JPype in-
tegrates tightly with the Java Native Interface (JNI) to
start a Java Virtual Machine (JVM) in the same process as
the Python interpreter. As a result, data can be passed
between Java and Python efficiently without the need to
copy data. To improve the developer experience, a tool
named stubgenj was created to generate Python type an-
notations for Java libraries. As a result, it is possible to
run static analysis tools and IDE auto-completion when
interacting with Java libraries through Python and JPype.

The other binding technology used to build-out capabil-
ity quickly was PyBind11 [18]. The tool generates Python
bindings to C++ libraries, based upon C++ declarations of
the desired interface. These declarations can be relatively
easily crafted to form intuitive and idiomatic Python
APIs. The results of creating bindings through PyBind11
are compiled shared-object modules. In order to maxim-
ise compatibility of these modules and to allow installa-
tion on multiple Linux operating systems, the
manylinux2014 [19] standard was used when publishing
Python wheels [20].

CONCLUSION
The formal adoption of Python for accelerator controls

at CERN was, on the surface, smooth and relatively
seamless. Despite this outward appearance some
significant culture shifts were introduced, including the
removal of one-size-fits-all Python distributions in favour
of virtual environments, the discouragement of script
writing in favour of Python package creation, and the
introduction of a community-focussed culture through
user meetings and a collaborative chat space.

In the accelerator sector Acc-Py has been well-received,
and as a result the use of Python is growing, users now
have more flexibility to pick the best tools for their job,
and most critically of all, the operational stability of
Python applications and services has been ensured.

Python and its associated ecosystem are fundamentally
open-source, and whilst costing more in the short-term, an
effort has been made to report and fix bugs identified with
the tools being used. In the long-term this strategy pays
off, as it minimises the need for local patches and
software bifurcation, and eases the future adoption of
newer versions. A by-product of this is better software for
all, including for other organisations following their own
Python adoption story.

Some of the concepts presented around acc-py-deploy,
particularly with regards to stability of execution and
repeatability of deployment, can be reasonably compared
to the benefits of containerisation. It is considered that the
deploy concept from acc-py-deploy will work well as a
build step for a container image, and that stable execution
could then be handled by the container runtime. This is
one particular area of potential future work for Acc-Py.

With key infrastructure in place, the Python adoption
phase has now been replaced by a growth phase. Growth
of the Python community in terms of number of users and
the collective Python skill, and growth in terms of the
quality & extent of the libraries provided to interact with
CERN’s accelerator control system.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV040

MOPV040C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

240 Software Technology Evolution

REFERENCES
[1] ZDNet review of Programming languages,

https://www.zdnet.com/article/programmin
g-languages-javascript-has-most-
developers-but-rust-is-the-fastest-
growing/

[2] D. Callahan, PyCon 2018 keynote,
https://youtu.be/ITksU31c1WY?t=420

[3] Accelerator & Technology Sector,
https://ats.web.cern.ch

[4] Python Package Index, https://pypi.org

[5] Anaconda distribution,
https://www.anaconda.com/products/indivi
dual

[6] pip permissions overview,
https://github.com/pypa/pip/issues/1668

[7] Imports should be “as free of side effects as possible”,
https://realpython.com/python-import

[8] Ł. Langa, PEP 602 - Annual Release Cycle for Python,
https://www.python.org/dev/peps/pep-0602

[9] T. Caswell et al., Recommend Python and NumPy version
support, https://numpy.org/neps/nep-0029-
deprecation_policy.html

[10] H. Schlawack, Recommendation to run a private PyPI
mirror, https://hynek.me/talks/python-
deployments

[11] What is a dependency confusion attack?,
https://secureteam.co.uk/news/what-is-a-
dependency-confusion-attack

[12] Disclosure of dependency confusion vulnerability in Nexus
for PyPI proxies,
https://issues.sonatype.org/browse/NEXUS
-24870

[13] Discussion of pip’s index group strategy,
https://discuss.python.org/t/dependency-
notation-including-the-index-url/5659

[14] pip configuration not inherited in virtual environments,
https://github.com/pypa/pip/issues/9752

[15] Install and Run Python Applications in Isolated
Environments, https://github.com/pypa/pipx

[16] Python dependency management and packaging made easy,
https://github.com/python-poetry/poetry

[17] JPype, a module to provide full access to Java from within
Python, https://jpype.readthedocs.io

[18] Seamless operability between C++11 and Python,
https://pybind11.readthedocs.io

[19] P. Moore, PEP 599 - The manylinux2014 Platform Tag,
https://www.python.org/dev/peps/pep-0599

[20] N. Coghlan, PEP 427 - The Wheel Binary Package Format,
https://www.python.org/dev/peps/pep-0427

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV040

Software Technology Evolution

MOPV040

241

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

