
ALBA CONTROLS SYSTEM SOFTWARE STACK UPGRADE

G. Cuni, F. Becheri, S. Blanch-Torné, C. Falcon-Torres, C. Pascual-Izarra,
Z. Reszela, S. Rubio-Manrique, ALBA-CELLS, Barcelona, Spain

Abstract
ALBA, a 3rd Generation Synchroton Light Source

located near Barcelona in Spain, is in operation since
2012. During the last 10 years, the updates of ALBA's
Control System were severely limited in order to prevent
disruptions of production equipment, at the cost of having
to deal with hardware and software obsolescence,
elevating the effort of maintenance and enhancements.
The construction of the second phase new beamlines
accelerated the renewal of the software stack. In order to
limit the number of supported platforms we also gradually
upgraded the already operational subsystems. We are in
the process of switching to the Debian OS, upgrading to
the Tango 9 Control System framework including the
Tango Archiving System to HDB++, migrating our code
to Python 3, and migrating our GUIs to PyQt5 and
PyQtGraph, etc. In order to ensure the project quality and
to facilitate future upgrades, we try to automate testing,
packaging, and configuration management with CI/CD
pipelines using, among others, the following tools: pytest,
Docker, GitLab-CI and Salt. In this paper, we present our
strategy in this project, the current status of different
upgrades and we share the lessons learnt.

ALBA CONTROLS SYSTEM
DEVELOPMENT AND EARLY

OPERATION
When building ALBA controls system, the main goal

from the software (and hardware) point of view was to
use standard tools and be as homogeneous as possible in
order to ease development, training, and troubleshooting.
Beamlines and accelerators have the same software
structure and use the same applications wherever it is
possible, for example, vacuum or motion control.

Controls Software Stack Overview
ALBA controls system uses Tango as middleware, a di-

stributed control system framework based on CORBA [1].
It is characterized by a client-server architecture, its ob-
ject-oriented design, and the use of the database as a bro-
ker and name service. The ALBA Controls Group chose
Python as the main programming language and strongly
invested in developing and supporting PyTango, a Python
binding to C++ Tango library [2].

The vast majority of GUIs at ALBA are developed
using Taurus [3], a library for building desktop applica-
tions in PyQt. Taurus was initially connecting only to Tan-
go models but over years its architecture evolved towards
a highly modular and data source agnostic solution broad-
ly used in numerous scientific installations.

Apart from Taurus, other generic and transversal
services, initially implemented as Tango device servers
interfaced from GUIs, gradually evolved into projects
used not only at ALBA beamlines and accelerators but
also at many other institutes of the Tango community.
These are, among others:

• Sardana, a scientific SCADA suite [4], which
consists of Taurus-based widgets for experiment
control and IPython based CLI called Spock on the
client-side, and a powerful sequencer called
MacroServer and Device Pool for interfacing with
the hardware on the server-side.

• Panic, an IEC62682 compliant Alarm Handling suite
(Alarm Handling Panic GUI and PyAlarm) [5]
capable of messaging and automated execution of
control system actions.

• Generic tools and device servers (Tango
import/export scrips, calculation device servers,
vacuum controllers, diagnostics tools) [6]

Apart from the generic services and user interfaces,
every sub-system has its specific applications, e.g. MX-
CuBE control application for macromolecular crystallo-
graphy experiments used at BL13, TXM control applica-
tion for tomography experiments used at BL09, or the ac-
celerator timing system controls stack (Linux drivers,
Tango device servers and GUIs).

The ALBA Controls Group used to manage all the soft-
ware under maintenance with the “bliss” system. The
bliss system, developed by the ESRF, is an rpm-based
packaging and Software Configuration Management
(SCM) tool. It comprises two applications: the blissbuil-
der and the blissinstaller, both offering intuitive to “non-
packaging experts” graphical way of defining and crea-
ting packages, and installing them, at the same time being
limited in terms of automatic package creation and de-
ployment.

The different pieces of software run on diskless com-
pact PCI (only for the accelerators) and industrial PCs, di-
stributed in the service area or experimental hall with di-
rect access to the hardware devices. The boot servers, ar-
chiving, Tango databases, CCD data acquisition, and va-
rious other services run on VMs centralized in the compu-
ting room. Most of the controls hosts run a standard Linux
distribution which at the beginning was openSUSE but
there are also some Windows hosts, mainly workstations
for data analysis.

ALBA CONTROLS SYSTEM SOFTWARE
OBSOLESCENCE

A control system for a scientific facility such as ALBA
is not a static system: new hardware needs to be suppor-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV037

MOPV037C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

222 Software Technology Evolution

ted, scientific software introduces requirements for up-to-
date libraries and other dependencies, etc. Similarly, the
different components of the system are heavily intercon-
nected, which makes that, very often, the upgrade of a
component requires similar upgrades in other related
components.

While the initial stack of technologies and strategic
decisions proved successful in the first stage of building
the ALBA controls system and first years of
commissioning and operation, they inevitably needed to
be reviewed and updated after more than a decade of use
and in the new stage of operation.

Operating System
Most of the control machines (and also the generic IT

servers and even personal desktop machines) installed du-
ring the first years of ALBA were running OpenSuSE
11.1, which had already reached its end-of-life in 2011,
even before ALBA entered into operation. This imposed
many limitations on the support for new software and
hardware, due to being tied to core libraries and modules
(e.g. libc, Python, numpy, PyQt4,...) that dated back to
2008. As this situation became increasingly problematic,
some selected machines, typically those accessed by end-
users, were upgraded to newer SuSE versions (mostly
OpenSuSE 12.1 , but also up to OpenSuSE 13.1), which
alleviated some specific issues but increased the mainte-
nance effort due to the larger number of platforms being
supported.

Operating systems security updates became scarce after
some years in operation, we had a big dependence on 32
bits systems that were not already supported with a lack
of hardware drivers for evolving these systems into more
up-to-date platforms. This situation was not sustainable,
and by 2015 a task force was constituted to evaluate the
different options for a general upgrade of the OS of
control system machines and also on the workflows for
simplifying future upgrades. As a result, in 2018 ALBA
started replacing OpenSuSE with Debian in the control
system machines (see more details in the "ALBA
Controls System Software Upgrade" section).

Packaging System
From the beginning, it was decided that all the software

should be packaged in order to be deployed on a control
system machine. This included software that was directly
developed by ALBA's control group but also any other
software that needed to be installed and which was not
available for our OS as a system package from official or
third-party repositories. Furthermore, it was decided to
separate the management of the software that was
installed as part of the control system from that related to
the "general operating system". To that effect, and in
order to facilitate the packaging tasks, the "bliss" system
from the ESRF was selected and custom-adapted to
ALBA's own conventions. While the packages produced
and managed by bliss were of the same type (RPMs) as
those of the system, they were different in that they were
unpackaged into non-standard paths and did not follow

the same quality rules (e.g. the dependency declaration
was managed by bliss and was very limited in comparison
with that of the system packages). This decision made
more sense in the early times of ALBA, when the
standard package build and management tools from the
Linux distributions were much less user friendly, but it
introduced several limitations that recommended its
reconsideration:

• the separation between "general system" and "control
system" was often not clear (e.g. in the case of
generic libraries such as hdf5 which were also
dependencies of control system packages, or the case
of custom kernel drivers necessary for hardware
support, or system daemons which were hard to
manage by bliss).

• it was difficult to have a clear view of the whole
stack of software required for a given purpose since
its management was splitted into different tools
(standard ones for the general system and bliss for
the control system)

• the custom nature of the bliss packages prevented us
from collaborating with other facilities in the
packaging of software (even for software developed
in collaboration, such as e.g. Tango)

• while bliss had a very gentle learning curve, it being
a custom solution often required using workarounds
to several of its limitations, which were not properly
documented but passed as "group-lore"

• with the advent of containerization, the use of a
custom packaging system made it very difficult to
benefit from standard container images

• the maintenance of the bliss packaging system itself
was a burden for the control system group

Because of these reasons, it was decided to move
towards using the native package system for the host OS
and standard package management tools as part of the
change to an updated OS.

Python
Most of the software developed and maintained at

ALBA is based on Python. Because of our dependency on
old OpenSuse 11.1 we were forced to support Python 2.6
this disincentivated the adoption of Python 3 within the
ALBA controls team even after 12 years of its release in
2008. As a consequence, in 2021, after Python 2 reached
its end-of-life we still have a considerable part of our soft-
ware depending on Python 2. This is especially problema-
tic because most of the core modules on which we depend
had actively stopped supporting Python 2 and current Li-
nux distributions already stopped providing them, making
a gradual transition more difficult and forcing us to keep
whole systems outdated because of it.

A lot of effort is being put on adapting our software to
Python 3, starting in 2019 when Taurus started supporting
it (with a common code base that also supported
Python2), and following with Sardana, some GUIs, Tango

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV037

Software Technology Evolution

MOPV037

223

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

Device Servers, etc. mostly associated to the OS update of
machines in the Control Room and Beamlines.

Tango
The development of ALBA Control System was initia-

ted using Tango 5 on OpenSuSE 10.2 platform. Prior to
starting operation it already evolved to Tango 6 over
OpenSuSE 11.1 and later to Tango 7, enhancing the per-
formance of the system and providing what has been our
stable platform for 10 years. Despite of the success on the
development of the control system, several limitations ge-
nerated recurrent issues, especially the dependence on
outdated Java packages due to old OS and the lack of per-
formance of the OmniNotify event system (notifd), that li-
mited the event throughput causing continuous incidences
and blocking the evolution to a full event-based architec-
ture.

An initial upgrade project was started for several ALBA
beamlines, for which a hybrid Tango 7/Tango 8 system
was deployed. Tango 8 introduced ZMQ as a new event
system, thus increasing the theoretical performance of the
control system and eliminating the need for a permanent
daemon dedicated to event dispatching, which was a re-
current cause of memory leaks and event bottlenecks.
This hybrid system performed poorly, due to the usage of
already obsolete operating systems and the (unknown at
the time) incompatibility between different versions of
ZMQ. Finally, a full Tango 8 based approach was adopted
for those upgraded control systems. Thid required the de-
ployment of multiple Jenkins servers in order to automati-
cally recompile all existing Tango Device Servers for eve-
ry new release of Tango.

Although Tango 8 was finally discarded as an
alternative for the main Accelerators Control System (due
to the legacy OS 32 bit dependency), all the work done on
CI for the Tango 8 upgrade became the base for the
current CI/CD workflow, which allowed a much
smoother upgrade of both OS and Tango to the latest
versions (Tango 9.3.4 over Debian 9), which solved all
the previous performance issues and allowed a successful
migration of all control systems at ALBA. The experience
during the migration process also triggered the Tango
Community to move from short-term releases to Long
Term Supported (LTS) releases, a move that benefited the
whole community in terms of development stability and
larger reusability of software stack throughout the
community.

PyQt and PyQwt
Taurus, and as a consequence most GUIs at ALBA, was

originally based on PyQt4 [7] for its general widgets and
on PyQwt5 [8] for its plot widgets. PyQt4 reached its end
of life in 2018 and PyQwt5 was by then already unmain-
tained (its latest release from 2011) and was never ported
to PyQt5 or Python 3.

As with Python, the need to run the control GUIs on an
obsolete OS shipping outdated versions of PyQt slowed
the porting of our own software. Taurus started supporting
PyQt5 in 2019 and switched to it as its default binding in

2020. It also started implementing alternative plotting
widgets based on PyQtgraph [9] in 2017 but these only
became ready to replace the old PyQwt5 ones in 2020.

After that, some GUIs (mostly the most modern ones
which were already based on Taurus >= 4) could be
ported with little effort, but many remain unported
because they still use Qt APIs that were already
deprecated in 2013. These are being gradually migrated as
part of the effort to update the OS of machines in the
Control Room and Beamlines.

ALBA CONTROLS SYSTEM SOFTWARE
UPGRADE

New Operating System Selection
In 2015 a task force involving various members of the

controls group in coordination with the IT infrastructure
group started evaluating the various candidates to replace
the old OpenSuSE 11 and 12 machines. One key decision
was to decouple the choice of the OS for control system
machines from that for generic IT systems because it be-
came evident that, apart from a common requirement for
robustness and long term maintainability, the requiremen-
ts were not compatible: in the case of the control system
we stressed the availability of scientific software and the
support of scientific instrumentation and varied hardware
platforms, while for generic IT systems the focus was on
vendor support and network and filesystem robustness. As
a result, OpenSuSE Leap and Debian were shortlisted as
the candidates for the control system, while the IT sy-
stems moved towards CentOS.

During two years we conducted an in-depth evaluation
of OpenSuSE (using versions 13.1 and 42.1) and Debian
(with versions 8 and 9). The main aspects being evaluated
were:

• life cycle and duration of supported updates
• amount of available software relevant for ALBA

(i.e., mostly science-related). In order of preference
we considered packages already included in the
distribution, then those officially packaged for the
distribution by its authors and then those packaged
unofficially by some third-party

• usage in other similar facilities, specially within the
Tango Collaboration

• relevant hardware platforms supported. In order of
priority: amd64, i386 and arm

• quality of the documentation and community support
• quality of native package build and management

tools

These aspects were not just evaluated from theoretical
research, but also tested in practice by deploying both
systems during more than a year to production
environments (a relatively simple beamline and a support
lab) for which we had to package and deploy a full basic
stack of control system software, ranging from hardware
kernel drivers to taurus-based GUIs and including also a
Tango system with several device servers.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV037

MOPV037C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

224 Software Technology Evolution

This selection process has been constrained by our
needs to evolve our stack of technologies, the feasibility
of porting existing devices, drivers, and applications from
32 to 64 bits hardware keeping consistency between the
new and legacy control systems as well as the necessity to
keep our CI/CD workflows in-house to avoid dependency
from external services. To be able to recompile and test all
the software stack onto new platforms, multiple Jenkins
servers were configured for all our existing OS at ALBA
(SuSE 11/12/42 and Debian 8/9 in 32/64 bits), including
physical hardware machines to test and evaluate hardware
drivers compatibility and performance. It allowed to test
all platforms and confirmed the necessity to keep 32 bits
support for the next 5 years.

Both distributions showed that they were fit for the
task, but Debian performed a bit better in most of the
aspects being evaluated and had better support to all our
hardware platforms, to the point that it was enough to
overcome the main advantage of OpenSuSE which was
that it involved less change with respect to the old system.
As a consequence, Debian was chosen and, in 2018 the
migration started with the upgrade of the Control Room
machines to Debian 9, and followed by the machines
dedicated to Sardana in the beamlines (at the moment of
writing all but two). Once this is done, other systems will
be gradually updated, leaving only some legacy systems
out of the upgrade.

Packaging
As mentioned in the "ALBA Controls System Software

Obsolescence" section, an important conclusion for the
OS update was to also switch from our custom packaging
system (bliss) to using standard system tools for both
building and managing the control system packages.

As part of the new OS evaluation, we evaluated the
"OpenSuse Build Service" [10] and the Debian packaging
toolchain. Of both systems, we valued that the packaging
could be managed with a workflow involving a version
control system: a domain-specific one inspired in CVS in
the case of OpenSuSE or git in the case of Debian [11].

Once Debian was chosen as our new OS for controls,
we produced a step-by-step guide, a set of examples, and
a Docker image with the whole Debian packaging tool-
chain in order to facilitate the transition from bliss to the
standard Debian packaging workflow. We provided trai-
ning to the whole group of controls developers, including
hand-on sessions in which we collectively packaged the
whole software stack required for the upgrading the Con-
trol Room machines.

On a first stage, the packaging workflow was done ma-
nually using the mentioned Docker image but, with the in-
troduction of "salsa" service by Debian [12], we extended
the Debian CI pipeline to automate the process [13]. Cur-
rently, the whole packaging process is done by a Gitlab CI
pipeline triggered by pushing a version tag to the packa-
ging repository and resulting in the package being auto-
matically built for various distributions, tested and uploa-
ded to a staging package repository. User intervention is
required only for adjusting the package configuration du-

ring the creation of the first version of the package, or
when the package configuration needs to be modified
(e.g., for updating a dependency). These interventions can
be entirely done using the web interface of Gitlab, elimi-
nating the need of locally installing the packaging tool-
chain. The same toolchain is also capable of promoting
the package to a production repository if the user con-
firms that it is ready after testing it using the staging repo-
sitory.

The packages produced using this pipeline need to pass
the same automated quality assurance tests used for the
official Debian packages, resulting in much better quality
packages than those that were created with bliss.

GUIs for Accelerators Operation
The upgrade of Graphical User Interfaces (GUI) for

operation has been a critical procedure, as it has been per-
formed gradually without interrupting the operation of the
accelerator. A gradual replacement of Control Room con-
soles has been performed over a 2 years period, in which
all legacy OpenSuSE machines have been replaced by
Debian, upgrading from Taurus 3 to Taurus 4 and Tango 9
in the process.

Paradoxically, the performance increase provided by
Tango 9 caused several issues on old applications, due to
the higher event throughput on those applications not pro-
perly designed to manage high update rates. Replacement
of old applications by newer versions was performed on
various stages, following a strict schedule in which users
were informed and allowed to test each application prior
to its deployment in production. Several applications re-
quired changes in its management of attribute updates.
Having all applications built on top of a common fra-
mework (Taurus) helped to implement the solutions requi-
red on Taurus itself, allowing the upgrade of multiple ap-
plications at once and allowing to solve issues once-for-
all as they appeared providing flexibility at the application
level to choose between polling or event-based refresh for
each attribute.

In addition to the Tango upgrade, several other techno-
logies were upgraded. Qt4 and Qwt libraries were repla-
ced by Qt5 and PyQtGraph, and the database backend for
both Tango database and Archiving System was upgraded
from MySQL 5.0 to MariaDB 10.0 the newest event-
based Tango Archiving System [14]. The adoption of Tau-
rus 4 on Qt5, which was profoundly refactored, required
to modify existing applications to use new Qt style si-
gnals, and the migration to PyQtGraph of archiving visua-
lization tools is still an ongoing project, for which new
Python 3 database extractors have been developed capa-
ble of online decimatiob of the incoming data from the
high-performance event system.

The usage of Taurus framework for developing all
custom applications required for day-to-day operation
allowed to do a transparent upgrade of those applications
developed using only generic Taurus widgets[3][15],
allowing to upgrade dozens of applications without only
minor modifications, mostly on unit visualization

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV037

Software Technology Evolution

MOPV037

225

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

(managed by Pint on Taurus 4) and attribute values
formatting.

Tango Device Servers Upgrade
Upgrading device servers to new technologies have be-

come one of the most difficult processes, due to the de-
pendency on old hardware and the lack of drivers for
newer operating systems. Industrial PC's devoted to hard-
ware testing have been deployed on several ALBA labora-
tories for testing every upgraded device server prior to its
deployment in production. Drivers have been updated
whenever open source code was available, and several
projects have been started to migrate DAQ acquisition
cards to newer platforms.

In the meantime, most of the hardware-based control
systems are still kept on legacy control system, while only
ethernet-based hardware (PLCs [16], cameras, scopes)
have been migrated to newer platforms using virtualized
hosts. We are in the process of migrating all serial-line ba-
sed device servers using serial-to-ethernet adapters, thus
eliminating the need for Industrial PC's for most vacuum
systems, and a new 32 bit Debian 9 image is under deve-
lopment to replace most of our legacy control systems.
We expect to migrate two thirds of our legacy control sy-
stem to Debian during the next year, but assuming that
still many hardware dedicated IOCs will have to be kept
on legacy versions waiting for a future hardware replace-
ment.

For those devices already running on Debian 9 and all
our purely software-based devices (database extractors,
data processors, calculation and simulation devices, alarm
systems) we started a project to migrate them to Python 3.
The project started with the migration of the common-
shared libraries (fandango [17], panic [5],
pytangoarchiving) and the adoption of the new Python HL
Tango API for every new development, which provides
fully Python 3 compatible code.

Sardana Python 3
Sardana is used by various European institutes, mainly

synchrotrons, and at ALBA it is used at the beamlines, ac-
celerator, and auxiliary laboratories. Due to the software
stack obsolescence at ALBA, the Sardana codebase was
required to maintain compatibility with Python 2.6, Tango
7, PyQt4, etc. for a long time. Even if the Sardana com-
munity was well aware of the Python 2 EoL the Sardana
codebase migration to Python 3 was always being delayed
in favor of other developments. This changed when the
ESRF announced that after its accelerator upgrade pro-
gram they would like to use Sardana with Python 3.

Sardana is a final application, not a library, and it follo-
wed a different migration approach than the Taurus pro-
ject. Sardana codebase was migrated to Python 3 without
supporting Python 2 at the same time. Sardana users hi-
ghly demand new feature requests and bug fixes that are
continuously being released. So, it was in the interest of
both users and developers that the setups were upgraded
to use the new Python 3 compatible version ASAP. The

upgrade process required the end users to migrate their
Sardana plugins to Python 3 as well.

In the case of ALBA, the Sardana upgrade to Python 3
required upgrading the OS to Debian 9, Tango to version
9, and Taurus to version 4. The project scope was limited
to upgrade only the strictly necessary part of the controls
system to provide to the users the Sardana service running
with Python 3. As a consequence, the coexistence of dif-
ferent software versions in different sub-systems was as-
sumed. A transversal workforce of nine controls engineers
was formed to work on the software migration to Python
3, packaging, testing, and commissioning.

The upgrade process consisted of two phases, first, the
Tango database service was upgraded to Tango 9. In this
process, the TANGO_HOST configuration was changed
to use a DNS network alias, in order to facilitate eventual
rollbacks and future upgrades. Here, two problems appea-
red: the Tango 7 event system started to suffer memory
leaks in certain conditions and the Tango Java event sy-
stem stopped working. In the second phase, the Sardana
Tango servers were moved to dedicated VMs and a new
workstation was prepare to run the Sardana client applica-
tions. Here, appeared problems with the Tango 9 causing
deadlocks and hangs of the experiment procedures.

The upgrade process required from the users a thorough
testing process, nevertheless, rollbacks were not avoided.
In order to advance in the upgrade, immediate
workarounds were applied and issues were escalated to
the Tango community, which was always very helpful in
debugging and solving problems. In the current state, all,
but two ALBA first phase beamlines were successfully
migrated and all the second phase beamlines were built
using Sardana Python 3. Other institutes in the Sardana
community are also very well advanced in the upgrade
process.

Following Debian updates
The selection of Debian as a new OS for the control sy-

stem was never considered as a one-time upgrade effort
but was more a commitment to try to follow future De-
bian releases according to the needs and capabilities of
the ALBA Controls Group. New Debian releases happen
every two years, are supported by three years by the De-
bian organization, and later receives an additional two
years of Long Term Support. During the three years of
support, the release is updated once in a while with secu-
rity fixes and fixes for important bugs. Those updates are
called "point releases".

All the control system Debian hosts at ALBA, unless
explicitly excluded, are upgraded to point releases during
short shutdowns (several times per year). This upgrades
only the non-control-system packages and the whole pro-
cess is highly automated using the Software Configura-
tion Management tool.

Due to the still not fully automated packaging creation
for the current and future Debian releases, the upgrade to
Debian 10 could not start as soon as it was available. Sin-
ce the packaging infrastructure is now ready, soon we will
start a project of upgrading the Sardana service to use De-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV037

MOPV037C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

226 Software Technology Evolution

bian 10, which will open new possibilities in the project
development thanks to the updated dependency stack.
This will be a minor effort thanks to the automatic packa-
ging and isolation of the Sardana Tango device servers on
a dedicated VM.

Debian 11 was released in August 2021 and upgrading
to it instead of Debian 10 has been discussed and is still
an option, but the decision is strongly conditioned by the
fact that Debian 11 does not provide a full Python 2 stack
nor PyQt4 and therefore all software running on it needs
to be ported to Python 3 and PyQt5 (or alternatively, run
on virtual environments or containers).

APPLIED PRACTICES AND TOOLS
Each author should submit the PDF file and all source

files (text and figures) to enable the paper to be recon-
structed if there are processing difficulties.

Testing
Testing plays a very important role in the control sy-

stem upgrade process, and testing strategy must be tailo-
red to the nature and development status of each of the
projects.

The SEP5 [18] introduced the first conventions for de-
veloping automatic tests with unittest module (part of the
Python standard library) for Sardana and Taurus on the
unit and integration level. Setting up Continuous Integra-
tion (CI) jobs for running those tests provided valuable
feedback and let us avoid many new bugs and regressions
before the upgrades in the production setups. Since the te-
sting coverage is still not satisfactory manual tests are
performed before every major release. Recently we deci-
ded to switch from unittest to PyTest [19] for developing
automatic tests because this second one provides a better
programming interface and many useful features available
out-of-the-box e.g. fixtures, parameterization of tests,
code patching, temporary resources context managers.

Developing automatic tests for the Tango control sy-
stem requires setting up necessary resources for the needs
of the tests. Our initial approach was to set up a disposa-
ble container running a Tango database with prepared in-
stances of the Tango devices and starting and stopping
Tango device servers for different classes of tests. Recen-
tly, in some tests, we started employing a different ap-
proach and use the PyTango (Multi)DeviceTestContext
which allows better test control and isolation.

Automatic tests for the controls software can either
interface with the real hardware or with simulators [20].
Currently, we employ this second strategy, for example,
in the case of Sardana all the possible controller types e.g.
motors or experimental channels are available in a
simulation mode and are used during the tests. Similarly,
in the case of the PyIcePAP, a Python library for
interfacing the IcePAP motion control, simulated
hardware is used during the tests. Furthermore, in the near
future, we plan to employ automatic tests with the real
hardware equipment located in our computing laboratory
into our CI and in addition run nightly stress tests to

discover non-easily reproducible bugs and performance
degradations.

Automation and Reproducibility
The advantages of using Continuous Integration for the

testing of both Taurus and Sardana have already been de-
scribed in the previous section. Our experience in these
cases has been unequivocally positive, because the use of
CI not only improved the overall quality of the code but
also enabled a much more agile collaboration as a conse-
quence of the reduced risk of regressions. We will certain-
ly promote the use of CI in other developments.

The use of Continuous Integration for software packa-
ging in ALBA has also been discussed above. It is impor-
tant to note that our current pipeline enables going one
step further towards using a Continuous Delivery approa-
ch. Also, the fact that the packages are now artifacts of a
fully reproducible pipeline whose logs are always availa-
ble for inspection, has also facilitated the collaboration
and support in the packaging process.

Additionally to the use of CI/CD for the packaging of
our internal developments, we are also using it for publi-
shing some of our software to PyPI, to Conda-Forge and
other Anaconda Cloud channels, and even to salsa for in-
clusion in the official Debian distribution. This greatly
improves the visibility and usability of our code outside
ALBA.

Finally, it is also interesting to mention another area in
which we found automation to be very helpful: the
generation of documentation for our projects. In the case
of Taurus and Sardana, we originally started by
generating the documentation of the Taurus and Sardana
projects using sphinx, and soon we automated it thanks to
the ReadTheDocs service which we found excellent.
However, we eventually decided to move the
documentation build to the same CI system that we used
for the code (first, Travis CI and now Gitlab CI [21]) in
order to unify the CI. Apart from these projects, we also
use Gitlab CI for autogenerating documentation of
internal software and deploy it automatically.

Configuration
The ALBA Controls Group uses Salt [17] to configure

and manage software on remote nodes. We are moving to
the central Salt Master the following tasks: the installation
of Debian packages, the clones of Git repositories, the in-
stallations with Pip, and the installation and configuration
of the Conda environments. We define a catalog of ALBA
Services e.g.: Tango, Sardana, Taurus, Icepapcms, Archi-
ving, etc. The application of the Salt recipes allows us to
automate the installation and configuration of the same
Services in parallel in different machines and in a repro-
ducible way. Each remote node is configured through Salt
Grains that specify which Services should be installed in
that node.

We are still in the process to fully adapt the Salt solu-
tion to ALBA controls system and we have some open
points, like the best use of version control of the services,

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV037

Software Technology Evolution

MOPV037

227

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

the proper workflow for testing a new version, or the use
of a graphical user interface.

One particularly problematic point is how to manage
rollbacks: the Salt recipes express the changes to be done
in the target machine, which is not exactly equivalent to
specify the state of the system. It is easy to conceive a
situation in which reverting a salt change leaves the
system in a state which is not identical to that previous to
the original application. For the moment, the use of
"snapshots" in the case of Virtual Machines seems the
best workaround.

Control Room Scheduled Updates
The upgrade of existing applications at ALBA Control

Room required a careful approach, as it needed to
guarantee maximum availability and stability for the
operation of ALBA Accelerators. It required careful
testing of every application, including hardware
interaction, before applying any update to the main
operator consoles. The need for hardware tests also forced
us to integrate the testing procedures with the
Accelerators Operation calendar, thus constraining the
CI/CD workflow and defining our Control Room Update
Flow states:

• Testing prior to deployment: Developers perform
tests of GUI applications and device servers under
development (from git or staging repositories) on a
dedicated machine, only during machine
maintenance periods (8-9 dedicated weeks per year).

• Testing on production: Packages are deployed on a
machine available to machine operators that can be
used to validate the latest releases (staging) of each
software package prior to its propagation to the
Control Room operators consoles. Applications are
kept on this stage for at least a machine-run period (4
to 5 weeks) prior to their promotion to the production
environment (only after validation by users).

• Production: Finally, validated applications available
in the production repository are deployed into the 10
operator consoles in the Control Room for its use by
all operators. Prior to the update, all previous stable
versions of packages are deployed into an
"old_stable" machine, available as a backup in case a
bug appears on operation despite all the previous
testing.

This workflow implies a delay of 5-6 weeks before a
development reaches its production status, a conservative
approach in order to guarantee the maximum stability of
the system. In the case hot-fixes are required, a special
mechanism to perform updates during machine days is
enabled (once per week), which requires a notification to
affected users via an Accelerator Interventions ticketing
system and an update of the configuration system (Salt
recipes), which is managed by a git repository thus
providing a register of changes.

Containerization
Up to now our use of (Docker) containers has been

mainly limited to the context of software development as,
e.g.:

• providing the environments for the CI jobs
• providing a pre-configured a clean environment for

manual testing or packaging of software
• developing or debugging in a reproducible

environment
However, we are also considering the use of containers

for deploying the control system in ALBA. In particular,
we are currently evaluating how to deploy our typical
beamline stack of applications as microservices in a
Kubernetes cluster. Some of the expected potential
advantages of this approach are:

• it could facilitate upgrades, thanks to the increased
isolation of each component

• rollbacks would be much easier since the whole
system can be re-deployed from scratch from a
version-controlled configuration

• it would simplify the debugging thanks to the
possibility of running clones of a given deployment

TOWARDS ALBA II
The recently approved ALBA II project will consist of

an upgrade of our installation to the 4th generation class
of synchrotron light source and is planned to happen in
2028. The new accelerator will provide lower emittance
and higher brilliance beam to the beamlines and new chal-
lenges to the control system. The ALBA Computing Divi-
sion started preparing for the future requirements by ana-
lyzing the lessons learnt from the ALBA construction and
operation as well as identifying and overviewing cutting-
edge solutions at similar facilities. In the following years,
it is planned to start exploratory projects to acquire the ne-
cessary expertise, at least, in the following mainstream
technologies which if applied could ensure long-term
maintainability of the ALBA II control system. First, iso-
lation of the controls software stack from the host OS, by
use of containers or isolated environments e.g. conda. Se-
cond, use of web technologies for operators GUIs, which
in comparison to desktop applications are cross-platform
compatible and more manageable (isolation is done on the
server placing minimal requirements on the end-user
workstation). We also look forward to the upcoming Tan-
go 10 version release, which code will be refactored/rew-
ritten in order to make it immune to the obsolescence of
libraries and technologies e.g. CORBA.

In parallel, some more specific projects for the ALBA
II control system have already been started. Here we
would like to mention a joint effort between BESSY,
DESY, and ALBA in the development of the third
harmonic cavity with the DLLRF at 1.5GHz. From the
side of controls, accelerators provides us with interface
information to the FPGA they program. We have
developed a Python binding using cython to access this
FPGA and the rest of the cards of the MicroTCA used for

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV037

MOPV037C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

228 Software Technology Evolution

this system. This binding is used to simplify their
development as well as to prepare an Agent in the DCS to
represent this card. The interface of registers provided by
accelerators is described in the csv file and this file is
used as a source for an auto-generation tool capable to
build not only the Tango device server but also the Taurus
GUI, based on conda environments using Python 3.9. The
current development is installed in an autonomous rack to
be moved to even another facility to be used. In the
installation, there is a pair of containers with the Tango
frontend and the MariaDB backend, and the Tango
control and the Taurus GUI work on their own conda
environments.

CONCLUSIONS
Decisions from the ALBA control system development,

commissioning and early operation were successful in
terms of the selected technologies e.g.: Tango, Python,
PyQt, Tango, etc. From the perspective of time, we belie-
ve that it is crucial to keep the OS updated. In our case,
the lack of update in the OS conditioned many other up-
dates and, in the long term, generated more efforts in wor-
karounds than the effort of keeping it up to date. Also, it
generated a huge effort when it had to be finally updated.
The big turnover in the team composition when transitio-
ning from the development into the operation phase was
probably decisive in postponing this effort.

Keeping the controls system up-to-date is a collective
responsibility of the whole team. Decisions at different
levels, from day-to-day to strategic, should be taken
considering the long-term maintainability of the control
system. Last but not least, it is highly recommended to
continuously follow and explore emerging technologies in
order to propose improvements, feel self-confident and
determined in proposing and conducting upgrade projects.

ACKNOWLEDGMENTS
All the work presented in this paper is an effort of the

ALBA Control Seccion members. We would like to
mention here: Jordi Andreu, Manuel Broseta [on leave],
Tiago Coutinho [on leave], Roberto Homs, Gabriel Jover
[on leave], Jairo Moldes, Daniel Roldan [on leave], and
Marc Rosanes [on leave]. The upgrade projects would not
be possible without support from other sections of the
Computing Division, mainly IT Systems Section, here we
would like to acknowledge Sergi Puso for his support in
multiple fields and Marc Rodriguez [on leave] for sharing
his expertise with us about Salt, and the MIS Section, here
we would like to acknowledge Daniel Sanchez for his
support in the GitLab administration. The ALBA
Accelerators and Beamlines Divisions, as users of the
control system, played an important role in the controls
system upgrade projects by performing acceptance tests
and provided valuable feedback. We would like to
recognize the help provided by the Tango Controls
Community members (a list of whom would be too large
to fit into this paper). Finally, we would like to
acknowledge the help from the Debian Science Team, and

especially Frederic Picca in guiding us in the process of
adopting the Debian packaging policies.

REFERENCES
[1] Tango, https://tango-controls.org
[2] PyTango, https://pytango.readthedocs.io
[3] C. Pascual-Izarra et al., “Effortless Creation of Control &

Data Acquisition Graphical User Interfaces with Taurus”,
in Proc. ICALEPCS'15, Melbourne, Australia, Oct. 2015,
pp. 1138-1142.
doi:10.18429/JACoW-ICALEPCS2015-THHC3O03

[4] T. M. Coutinho et al., “Sardana: The Software for Building
SCADAS in Scientific Environments”, in Proc.
ICALEPCS'11, Grenoble, France, Oct. 2011, paper
WEAAUST01, pp. 607-609.

[5] S. Rubio-Manrique, G. Cuni, D. Fernandez-Carreiras, and
G. Scalamera, “PANIC and the Evolution of Tango Alarm
Handlers”, in Proc. ICALEPCS'17, Barcelona, Spain, Oct.
2017, pp. 170-175.
doi:10.18429/JACoW-ICALEPCS2017-TUBPL03

[6] S. Rubio-Manrique, T. Coutinho, R. Suñé, and E. T. Taurel,
“Dynamic Attributes and Other Functional Flexibilities of
PyTango”, in Proc. ICALEPCS'09, Kobe, Japan, Oct. 2009,
paper THP079, pp. 824-826.

[7] PyQt,
https://www.riverbankcomputing.com/software/
pyqt/

[8] PyQwt5, http://pyqwt.sourceforge.net/
[9] PyQtGraph, https://www.pyqtgraph.org/

[10] OBS, https://build.opensuse.org/
[11] gbp, https://wiki.debian.org/PackagingWithGit
[12] salsa, https://salsa.debian.org
[13] C. Pascual-Izarra et al., “Collaborative and Automated

Packaging”, 32nd Tango Meeting, Prague,
https://indico.eli-beams.eu/event/310/contri
butions/738/attachments/547/700/
CollabPkg.pdf

[14] L. Pivetta et al., “New Developments for the HDB++
TANGO Archiving System”, in Proc. ICALEPCS'17,
Barcelona, Spain, Oct. 2017, pp. 801-805.
doi:10.18429/JACoW-ICALEPCS2017-TUPHA166

[15] S. Rubio et al., , “Unifying All TANGO Control Services in
a Customizable Graphical User Interface”, in Proc.
ICALEPCS'15, Melbourne, Australia, Oct. 2015, pp. 1052-
1055.
doi:10.18429/JACoW-ICALEPCS2015-WEPGF148

[16] PyPLC,
https://gitlab.com/tango-controls/PyPLC

[17] Fandango,
https://gitlab.com/tango-controls/fandango

[18] SEP5,
https://github.com/sardana-org/sardana/blob/
develop/doc/source/sep/SEP5.md

[19] PyTest, pytest.org
[20] S. Rubio-Manrique et al., “Reproduce Anything,

Anywhere: A Generic Simulation Suite for Tango Control
Systems”, in Proc. ICALEPCS'17, Barcelona, Spain, Oct.
2017, pp. 280-284.
doi:10.18429/JACoW-ICALEPCS2017-TUDPL01

[21] A. Götz et al., , “Migration of Tango Controls Source Code
Repositories”, presented at the ICALEPCS'21, Shanghai,
China, Oct. 2021, paper MOPV034, this conference.

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV037

Software Technology Evolution

MOPV037

229

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

