
INTEGRATING OPC UA DEVICES IN EPICS 

R. Lange†, ITER Organization, 13067 St. Paul lez Durance, France 

R. A. Elliot, K. Vestin, European Spallation Source, 221 00 Lund, Sweden 

B. Kuner, C. Winkler, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany 

D. Zimoch, Paul-Scherrer-Institut, 5232 Villigen PSI, Switzerland 

Abstract 

OPC Unified Architecture (OPC UA) is an open plat-
form independent communication architecture for indus-
trial automation developed by the OPC Foundation. Its key 
characteristics include a rich service-oriented architecture, 
enhanced security functionality and an integral information 
model, allowing to map complex data into an OPC UA 
namespace. 

With its increasing popularity in the industrial world, 
OPC UA is an excellent strategic choice for integrating a 
wealth of different COTS devices and controllers into an 
existing control system infrastructure. The security func-
tions extend its application to larger networks and across 
firewalls, while the support of user-defined data structures 
and fully symbolic addressing ensure flexibility, separation 
of concerns and robustness in the user interfaces. 

In an international collaboration, a generic OPC UA sup-
port for the EPICS control system toolkit has been devel-
oped. It is used in operation at several facilities, integrating 
a variety of commercial controllers and systems. We de-
scribe design and implementation approach, discuss use 
cases and software quality aspects, report performance and 
present a roadmap of the next development steps. 

INTRODUCTION 
Open Platform Communications Unified Architecture 

(OPC UA) is an open standard architecture intended to im-
prove and expand interoperability in the Industrial Auto-
mation industry. It is a machine-to-machine communica-
tion protocol for industrial automation developed by the 
OPC Foundation [1] and released in 2008. 

While its predecessor, OLE for Process Control (OPC; 
re-branded as OPC Classic) was developed by Microsoft 
and used a transport layer based on proprietary Microsoft 
software (e.g., OLE, DCOM), OPC UA focuses on plat-
form independence and uses well-known open standards 
like TCP and TLS. 

Over the last years, OPC UA has become increasingly 
popular in the world of Industrial Automation. Across all 
vendors, framework and device types, it is a key word for 
interoperability and integration, boosted by the OPC Foun-
dation’s certification program that ensures high levels of 
compliance. 

OPC UA ARCHITECTURE 

Features 

OPC UA integrates all functionality of the OPC Classic 
specifications into a single extensible framework, provid-
ing (see [1]):  Functional equivalence: all OPC Classic specifications 

are mapped to Unified Architecture.  Platform independence: hardware and operating sys-

tem portability covers everything from embedded sys-

tems to cloud-based infrastructure.  Security: encryption, signing, authentication and au-

diting allow messages to be transmitted securely with 

verifiable integrity.  Extensibility: new features can be added without af-

fecting existing applications.  Information modelling: a framework helps defining 

complex information. 

Core Concepts 

The client-server communication model of OPC UA is 
layered: on top of a transport, which can be secured, the 
client opens a session to a server. Within that session, every 
piece of information is an item that can be written or read. 
Items are uniquely identified by a nodeID, consisting of a 
namespace number and an identifier, which can be numer-
ical or a name string. To overcome the disadvantage of hav-
ing to look up nodes by their name with every access, the 
client can register nodes with the server, to allow optimiz-
ing their name resolution. 

Each item has a typed value, which can be of a basic data 
type, an array thereof, a union, or a structure consisting of 
multiple named elements, which are themselves of basic 
type, arrays, unions or structures. 

Opening subscriptions in the session allows monitoring 
items for changes in their values. The subscription has a 
configurable publishing period, but any monitored item in 
the subscription can use a different sampling period for up-
dating the value from the underlying device. For values that 
are sampled faster than their subscription is published, data 
loss can be avoided by defining a server-side queue. 

OPC UA methods are basically remote procedure calls. 
They allow the client to send parameters (which can be of 
structured data types) and can return results to the client. 
All handshake and synchronization is part of the protocol 
specification and done within the client and server librar-
ies. 

 ___________________________________________  

† ralph.lange@iter.org 

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV026

MOPV026C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

184 Software Technology Evolution



INTEGRATION OF CONTROLLERS 
In the existing approaches to integrate industrial control-

lers in control systems, a number of issues can be identified 
that can benefit from the application of OPC UA. 

Industry Standard 

Integration of industrial controllers in control systems is 
a field of mostly proprietary protocols, which are usually 
vendor and sometimes device series specific. Setting up the 
communication with a new controller from a different ven-
dor means switching to (or developing) a new driver, deal-
ing with the issues and subtleties of a new protocol, gath-
ering knowledge with a very narrow scope. For facilities 
with a long life time and in-kind contributions, the accu-
mulation of driver software eventually induces a heavy 
maintenance burden. 

Using an industry standard greatly reduces the amount 
of software related to the integration. Knowledge of the 
protocol is wide spread. Independent certification lowers 
the risk of particular devices behaving unexpectedly. 

Symbolic Addressing 

In some of the controller communication protocols, low 
level addressing is done through byte offsets in data blocks 
inside the controller, e.g. for the Siemens S7 communica-
tion [2, 3] and the TCP data block send/receive [4]. Such 
offset addressing is brittle and susceptible to misalign-
ments between the client and the controller. Several con-
figuration approaches include the generation of both the 
data blocks on the controller and the configuration of the 
client as well as strict version tagging and checking to re-
duce the risk of mismatch [5, 6]. 

Symbolic addressing makes the client configuration 
much more obvious and handles modification of the con-
troller software in a robust fashion. Controller and client 
development workflows can be cleanly separated and have 
a clear interface. 

Structured Data 

Modern industrial controller programming uses object-
like blocks that are repeated when systems are scaled up. 
Such programming techniques inherently produce hierar-
chical data structures on the controller. Mapping these ob-
jects into a flat structure for the controller communication 
(e.g., for the send/receive driver [4]) needs additional pro-
gramming on the controller that adds complexity, needs de-
velopment resources and uses run time resources on the 
controller. 

Using OPC UA, the controller structures are directly 
mapped into the OPC UA namespace. No additional pro-
gramming is needed on the controller. The client configu-
ration directly uses the server-side hierarchy. 

Remote Procedure Calls 

Existing communication protocols are usually data-cen-
tric – they cover reading and writing data from/to the con-
troller memory. Many control systems integrations have a 
concept of commands, which needs to be implemented on 

top of the data-centric interface. Such implementations re-
quire additional effort and programming on both the client 
and the controller for the synchronization (handshake). 

Industrial controllers map the OPC UA methods feature 
(see below) to the execution of a function block, including 
the transmission of parameters and return values. This al-
lows for a very simple yet rich and powerful implementa-
tion of commands. 

Security 

Specific applications, e.g. in the context of medical ac-
celerators and for communications with safety and inter-
lock systems, require or benefit from using the security fea-
tures of OPC UA. 

Secure OPC UA communication also allows running 
connections over insecure or open networks, e.g. wireless 
or remote connections. 

Embedded OPC UA Servers 

Some popular standard PLCs, like the Siemens S7 1200 
and 1500 series, can run OPC UA servers embedded inside 
the controller. This allows for a slim and simple integration 
architecture, avoiding additional layers of hard- and soft-
ware between controller and integration. 

EPICS DEVICE SUPPORT 
From the beginning of the project, the goal was to pro-

vide a solution completely based on free and open soft-
ware. 

However, based on an evaluation of existing OPC UA 
clients, the C++ Based OPC UA Client SDK by Unified 
Automation [7] was selected as the first client library to be 
supported. Other candidates were disregarded because of 
incomplete implementation of the OPC UA specification, 
low robustness in failure scenarios or poor consistency of 
their API with EPICS concepts. 

Consequently, the OPC UA Device Support module is 
also written in C++, using an architecture that supports 
adding other low level client libraries. A second implemen-
tation is currently being added to the project, based on the 
client library of the open62541 [8] project. 

Layered Structure 

The interface to the EPICS Database supports all appli-
cable record and data types from EPICS Base. In addition 
to the configuration of sessions and subscriptions, a set of 
tracing and debugging functions is available to be used 
from the EPICS iocShell. 

Below that, a generic layer of interfaces (C++ virtual 
base classes) follows the core definitions of OPC UA: ses-
sion, subscription, item and data element (implementing 
one value inside a structure) are interfaces to their respec-
tive implementations by the client library. A set of helper 
classes (implemented as templates) covers functionalities 
that all client libraries need to provide. 

The lower layer provides implementation and adaptation 
of the generic APIs to the specifically used client library. 
In the case of the Unified Automation client, this part con-

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV026

Software Technology Evolution

MOPV026

185

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



tains a pretty straightforward mapping to the SDK’s inter-
faces. The open62541 based implementation adds a fair 
amount of complexity in this layer, wrapping around the 
simpler C APIs of the open62541 client. 

Recently, a second implementation of an EPICS Device 
Support for the open62541 client has been announced [9], 
suggesting that this client in its current state is a viable al-
ternative. 

Robust Support for Structured Data 

Structured data needs to be well supported, as the Sie-
mens S7 embedded OPC UA server (one of the main use 
cases) performs much better when using structured data 
compared to addressing every element as a separate OPC 
UA item. 

Interfacing structured data to the EPICS Database 
pushes for a separation between the item with its configu-
ration parameters and the elements (values) of the structure 
that are each connected to a different EPICS record. This 
is reflected in the implementation: A single item record (an 
additional EPICS record type) carrying the item related 
configuration connects to the item object below. Many reg-
ular EPICS records carrying the single value related infor-
mation and their address relative to the structure root con-
nect each to one data element object below. The addressing 
information from the data element records is used to create 
a tree of data element objects that represents the expected 
structure. As the OPC UA server may change its internal 
structure between sessions, this IOC side tree must be 
mapped against the structure that is actually found on the 
server every time a session is established or re-established. 

Writeable data structures can be handled in two modes: 
When many elements of a structure are changed in one mo-
ment (e.g., when loading back snapshot data), OPC UA 
sending can be triggered explicitly by writing to a field of 
the item record. When only single elements of a structure 
are written at a time (e.g., while operating), OPC UA send-
ing can be triggered automatically whenever a data element 
is written to. 

SOFTWARE QA 

Static Code Analysis 

Static code analysis is being performed on the module as 
part of the Continuous Integration setups, making sure that 
the code is consistently showing high quality ratings. The 
public service Codacy is used for static analysis of the code 
in the public upstream repository [10] in addition to 
ITER’s local installation of SonarQube [11]. 

Unit Testing 

Unit tests have been introduced for the helper classes in 
the generic layer. Coverage, however, is still very limited. 
Unit tests for the lower level code would be highly desira-
ble, but will need a noticeable investment. A possible ap-
proach would be using a mock of the client library APIs 
with GoogleTest [12] to allow separate testing of the inte-
gration layer. 

End-to-End Testing 

An end-to-end test suite was developed to provide con-
fidence that the device support module functions as ex-
pected, in terms of correctness and performance. It also 
serves to test for any regression that may be introduced, as 
the tests can be triggered to automatically run for all new 
commits to the source repository. 

The test setup comprises of a software OPC UA server, 
implemented using open62541 [8], two IOCs, and a Py-
thon-based test suite using pytest [13]. In order to com-
municate with both an EPICS IOC and the OPC UA soft-
ware server directly, both the PyEpics [14] and opcua [15] 
Python modules are used. Running of the software server 
and IOC is handled during test execution by way of test 
setup and teardown methods. 

The OPC UA test server hosts a set of items, covering all 
supported OPC UA data types. Connection tests validate 
the ability of the EPICS module to connect, reconnect and 
disconnect from the OPC UA server under a variety of con-
ditions. Variable tests verify that that EPICS module cor-
rectly translates variable values to/from the types used on 
the OPC UA server. Performance tests are used to charac-
terize the performance of the EPICS module in terms of 
execution time and memory consumption. Negative tests 
ensure that the EPICS module is able to handle error cases 
and incorrect inputs gracefully. 

The test suite is currently in active use at the ESS facility 
to provide regression testing under the localized EPICS 
build system, ensuring that any changes to EPICS environ-
ment or OPC UA module have no detrimental impact on 
the relevant devices in the control system. 

A second set of automated tests based on the same frame-
work has been defined for the ABB Power SCADA inte-
gration at the ESS to allow efficient regression testing on 
the final application level as well as on the device support 
level. 

Both test suites are configured to be executed as part of 
the ESS build pipeline for any new merges against the de-
vice support or application modules. 

A COLLABORATIVE EFFORT 
In 2016, B. Kuner at the Helmholtz-Zentrum Berlin 

evaluated available public and commercial OPC UA client 
libraries and settled on the C++ Based OPC UA Client 
SDK by Unified Automation [7]. He created a prototype of 
the EPICS Device Support [16], robust enough to be used 
in production at BESSY II and ITER for several years. 

After performance measurements using the prototype at 
ITER were showing solid results, R. Lange started the full 
implementation [17] in 2018, based on the design outlined 
above. Other institutes were doing evaluations of the mod-
ule while it was being developed. 

In 2020, R. A. Elliot and K. Vestin began working on the 
end-to-end test suite described above, which will be 
merged to become part of the main project in the next ver-
sion. 

In 2021, C. Winkler was helping to finalize and test the 
Windows build of the Device Support. D. Zimoch and 

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV026

MOPV026C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

186 Software Technology Evolution



C. Winkler started the integration of the open62541 client 
library, which is still ongoing and is likely be added to the 
main project soon. 

CURRENT STATUS AND ROADMAP 
The EPICS OPC UA Device Support module is stable, 

mature and robust. It is used by several institutes against 
different OPC UA servers in productional setups. Table 1 
shows a list of currently known applications of the module 
and their status. 

Table 1: Existing Users and Applications (incomplete) 

Facility OPC UA Server Status 
ASIPP LabVIEW production 

 PLC Siemens 

S7-1500 

production 

Australian Syn-
chrotron 

PLC Siemens 

S7-1500F 

near production 

BESSY II @HZB PLC Siemens 

S7-1500 

production 

 Phoenix Contact production 

 Softing uaGate production 

CHIMERA 
@CCFE 

PLC Siemens 

S7-1500 

development 

 LabVIEW development 
ESS PLC Siemens 

S7-1500F 

production 

 ABB 

Power SCADA 

near production 

 Siemens DESIGO development 
Fermilab Kepware 

KEPServerEX 

testing 

 PLC Siemens 

S7-400 

development 

IPR PLC Siemens 

S7-1500 

testing 

ITER PLC Siemens 

S7-1500 

production 

 Siemens 

WinCC OA 

production 

 PCVue production 

KATRIN @KIT 
[18] 

LabVIEW prototyping 

PSI PLC Siemens 

S7-1500 

development 

Varian ProBeam1 PLC Siemens S7 production 

 PLC Beckhoff production 

A requirement specification exists and is kept up-to-
date [19]. The remaining feature from this document that 
needs to be implemented is the support for OPC UA meth-
ods – this effort has been started. 

Comprehensive user level documentation still needs to 
be added. The existing “cheat sheet” documentation is 
sparse. 

The unit tests and the end-to-end test suite need to be 
extended and completed to achieve a better level of test 
coverage. 

REFERENCES 
[1] OPC Foundation, https: //opcfoundation.org 

[2] What properties, advantages and special features does the 
S7 protocol offer?,  
https://support.industry.siemens.com/cs/docu
ment/26483647/what-properties-advantages-
and-special-features-does-the-s7-protocol-
offer- 

[3] S. Marsching, “A New EPICS Device Support for S7 
PLCs”, in Proc. 14th Int. Conf on Accelerator and Large 
Experimental Physics Control Systems (ICALEPCS2013), 
San Francisco, CA, USA, Oct. 2013, paper THPPC027, 
pp. 1147-1149. 

[4] EPICS S7PLC Driver,  
http://epics.web.psi.ch/software/s7plc 

[5] S. Pande et al., “CODAC Standardisation of PLC 
Communication”, in Proc. 14th Int. Conf on Accelerator 
and Large Experimental Physics Control Systems 
(ICALEPCS2013), San Francisco, CA, USA, 2013, paper 
THPPC004, pp. 1097-1099. 

[6] G. Ulm et al., “PLC Factory: Automating Routine Tasks in 
Large-Scale PLC Software Development”, in Proc. 16th Int. 
Conf on Accelerator and Large Experimental Physics 
Control Systems (ICALEPCS2017), Barcelona, Spain, Oct. 
2017, paper TUPHA046, pp. 495-500.  
doi:10.18429/JACoW-ICALEPCS2017-TUPHA046 

[7] Unified Automation, C++ Based OPC UA Client SDK,  
https://www.unified-
automation.com/products/client-sdk/c-ua-
client-sdk.html 

[8] open62541 project, https://open62541.org 

[9] S. Marsching, “Integrating OPC UA Devices into EPICS 
Using the Open62541 Library”, presented at the 18th Int. 
Conf. on Accelerator and Large Experimental Physics 
Control  Systems  (ICALEPCS2021),  Shanghai,  China, 
Oct. 2021, paper TUBR05, this conference. 

[10] Codacy page of the OPC UA module,  
https://app.codacy.com/gh/epics-
modules/opcua/dashboard 

[11] SonarQube, https://www.sonarqube.org 

[12] GoogleTest/GoogleMock, 
https://google.github.io/googletest 

[13] pytest, https://docs.pytest.org 

[14] EPICS Channel Access for Python,  
https://pypi.org/project/pyepics 

[15] python-opcua project,  
https://github.com/FreeOpcUa/python-opcua 

[16] opcUaUnifiedAutomation project (prototype),  
https://github.com/bkuner/opcUaUnifiedAutoma
tion 

[17] EPICS OPC UA Device Support project,  
https://github.com/epics-modules/opcua 

[18] J. Mostafa et al., “Interfacing EPICS and LabVIEW Using 
OPC UA for Slow Control Systems”, presented at the 18th 
Int. Conf. on Accelerator and Large Experimental Physics 
Control  Systems  (ICALEPCS2021),  Shanghai,  China, 
Oct. 2021, paper TUPV011, this conference. 

[19] EPICS OPC UA Device Support Software Requirements 
Specification, revision 1.1,  
https://docs.google.com/document/d/1_NaSPZNG
uRRt8m92Nd2NvJ6LrNAN9UkvTSSIpogSGL4  ___________________________________________  

1 On Windows and VxWorks platforms. 

18th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2021, Shanghai, China JACoW Publishing
ISBN: 978-3-95450-221-9 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2021-MOPV026

Software Technology Evolution

MOPV026

187

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


