
Improvement of EPICS Software 
Deployment at NSLS-II

ICALEPCS 2019

Anton A. Derbenev, 8 October 2019



Presentation Plan

• Overview of NSLS-II software delivery

• Key considerations for delivery system design

• A note on solution support

• Utilized and explored approaches

• Future plans

• Conclusion

2



NSLS-II Software Delivery Overview

• NSLS-II uses Experimental Physics and Industrial Control System (EPICS)

• EPICS base, modules available as Debian packages from NSLS-II repo
• Debian 8, 9, and 10 (untested) published
• “Debianized” sources come from epicsdeb on GitHub (no EPICS 7 packaging)
• Delivered to IOC systems by puppet

• Manual builds for newer software (EPICS 7, AreaDetector 3.7…)

• Using GitLab and Mercurial for code and configurations

• IOCs deployed manually, sysv-rc-softioc (procServ) for run control, logs…

• Services deployed manually, configurations come from central repository

• Central repository for OPIs, automatically synced to workstations

3



EPICS Base and Modules Delivery

4

Code

Binaries

Developer

“Debianized” 
code

Debian 
repository

Production

Maintainer
Repository 

owner

System 
owner

Tester

• May look simple, but 
many aspects are covered: 
building, distribution, 
updates, versioning, etc.

• Doesn’t answer all 
questions: coordination is 
required to ensure that 
environment is both 
stable and up to date



Key Considerations - I

• There are many ways to organize software delivery

• For evaluation, important characteristics were identified

• Considerations for the solution itself:
• Scalability of the same approach across 28+ beamlines (isolated subnets?)

• Maintainability of involved tools, services, infrastructure (docker engine?)

• Accessibility for software developers and maintainers (trainings?)

• Accommodation of unique cases to leave behind as few as possible (legacy?)

• Support of different OSs to cover what’s used in the system (Windows?)

5



Key Considerations - II

• Most requirements come from software specifics

• Considerations for applications which are deployed:
• Support of persistence to retain local runtime changes (IOC autosave?)

• Release/staging function for rollbacks on immediate failure (segfault on run?)

• Versioning for mitigating instability (occasional crashes?)

• In-place production modifications for urgent fixes (hardware IP change?)

• Preliminary testing to not endanger the production (java update?)

• Replication of app instances to reuse common code/binaries (same driver?)

• Ease of instance recovery for severe failures (server malfunction?)

6



Special Note – Solution Support

• With higher abstraction comes more sophisticated technology

• The delivery solution itself will evolve, not only applications

• Support needs are not one-time but a persistent liability:
• Configuring and updating infrastructure, pipeline, tools

• Introducing fixes and requested features

• Performing hardware support and upgrade

• Maintaining virtualization/containerization

• Training and documentation upkeep

7



Utilized and Explored Approaches

• Manual delivery with version control
• SSH to machine, clone the code and build in-place

• Manual delivery with binary bundles
• Pre-built binaries put on NFS, location mounted on servers

• Orchestrated delivery on demand
• Ansible-based toolkit to perform checkout, build, and deployment (SNACK)

• CI(/CD) pipelines
• Jenkins for EPICS services test & build

• VMs/containers
• VMs are commonality, Docker containers as a proof of concept

8



Sample – Docker Containers

• EPICS image based on Debian

• IOC image based on EPICS image

• Use volumes for persistence

• Use host networking for CA

• Docker features for tags, run 
control, logging, monitoring…

• A foundation to go higher!

9



Apps in Containers on VMs on Servers

• Switch to containers with known and exact 
configuration
• Leave legacy behind
• Easy to re-deploy and recover
• Perform testing in isolation from production

• Use modern CI/CD tools
• Modern solutions are easier in support
• Users get a well-defined toolkit
• Can abstract further (compose, swarm, Kubernetes…)

• De-couple from infrastructure considerations
• Not influenced by external changes, e.g. 

dependencies, OS, and environment configuration
• Agnostic to hardware

10



Future Plans

• Invest in hardware, software, and expertise for CI/CD in general
• “Container host” machines are standing by for Docker etc. experiments
• Planning to actually use Jenkins/GitLab/etc. for production delivery

• Specifically focus on deployment and update for tools and services
• Deliver CS-Studio, Olog, Alarm, Phoebus…
• Take dependencies under control

• Specifically focus on delivering detector software
• AreaDetector building, binaries distribution, and IOCs deployment
• Try to keep it abstract enough to apply to system IOCs in general

• Plan on future delivery for development environments – EPICS [7]
• Put more effort and pressure to Debian packaging?
• Use different OS or delivery mechanism?
• Go really virtual/containers?
• Combination of that?

11



Conclusion

• New ways of delivery are needed to keep up with systems evolution
• Legacy pressure grows every day

• There are many considerations to be aware of, all with support needs
• Should prioritize requirements and not over-design

• We are looking forward to bringing new tools and approaches
• Investing in new hardware for CI/CD pipelines, and to try containers

12



Thanks for your attention!
Questions?

13


