CODE GENERATION BASED ON IFML FOR THE USER
INTERFACES OF THE SQUARE KILOMETRE ARRAY (SKA)

M. Brambilla, S. Pavanetto, M. Gasparini, Politecnico di Milano, Milano, Italy
A. Marassi, R. Cirami, INAF-Astronomical Observatory of Trieste, Trieste, Italy

INTRODUCTION

SKA Dish

The Square Kilometre Array (SKA) project is
responsible for developing the SKA Observatory, the
world's largest radiotelescope ever built: eventually
two arrays of radio antennas - SKA1-Mid and SKA1-
Low - will be installed in the South Africa's Karoo
region and Western Australia's Murchison Shire,
each covering a different range of radio frequencies.
In particular SKA1-Mid array will comprise 133 15m
diameter dish antennas observing in the 350 MHz-14
GHz range, each locally managed by a Local
Monitoring and Control (LMC) system and remotely
orchestrated by the SKA Telescope Manager (TM)
system.
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Figure 1 SKA Dish antenna overview

Dish User Interfaces

In this work we have considered the Engineering
interfaces used by DSH sub-elements engineers for
test,diagnostic,maintenance and, in particular, LMC
engineering interface, already identified and
specified in previous work!. An example is reported
in Figure 2.

LMC will provide GUIs to be used for testing and
DISH control in stand-alone mode for testing,
commissioning and maintenance, offering basic
functionalities of DSH control & monitoring, set-up,
control and testing, health monitoring, alarm
management, lifecycle support, direct access
monitoring in case of TM failure.
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METHODS

Usability and Accessibility

We aim at maximizing usability and accessibility of
SKA- LMC user interfaces.

USAGE-CENTERED DESIGN

We start by applying usage-centered design (UCD)
approaches! for interactive software applications,
based on feedback offered by users, iterative
design, prototyping and evaluation based on
usability.23:4>6.7

All the DISH LMC GUIls Usage Centered Design
activities have been carried out as part of the tasks
performed in the so-called SKA pre-construction phase
by the SKA.DISH consortium (SKADC).

INAF - Catania Astrophysical Observatory, as
member of the SKA.DISH consortium, had the
responsibility of DISH LMC design, prototyping,
testing and validation.

In this work we apply conceptual modeling of user
interaction, focusing on expressing the content,
user interaction, and control behavior of the Ul
through visual diagrams that represent the navigation
paths of the user. Interactions have been modeled
using the standard Interaction Flow Modeling
Language (IFML)3. IFML is instrumental to provide a
conceptual view of the user interfaces (see excerpt in
Figure 4), which can leads to automatic verification
and quick prototyping.

We exploit IFML as a conceptual modeling language,
and |IFMLEdit.org as editing tool and implementation
plattorm for specifying a full model-driven
development process with automated code
generation for Qt/Taurus.

To this end, we apply the practices of model-driven
software development (MDD), which entails
automation of some of the steps of the development
process from a high level conceptual representation
of the desired software features, down to deriving a
running application out of it, possibly through a set of
intermediate steps to enable customization (Fig. 3).
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Figure 3 The model-driven development process.

RESULTS

Starting from |[FML models, our prototype implements
a full code generator for Qt/Taurus. The
Implementation is written in Javascript, so as to be
fully integrated with IFMLedit.org.

The implementation of the generator is integrated
with the IFMLedit.org editor, and is available as open
source code on Github under the Apache 2.0 license:

https://qithub.com/DataSciencePolimi/IFML-to-QT-Taurus-SKA

The generation process considers in input a simple
set of IFML items and builds a mapping to QT/Taurus
implementation elements in a straightforward way.
This table shows an excerpt of the most important
element mappings:

IFML CONCEPT QT IMPLEMENTATION
IFML MODEL Qt Gui

VIEW CONTAINER Qt Window

NESTED VIEWCONTAINER Qt TabWidget

VIEW COMPONENT: Qt Form

FORM (WITH FIELDS) (with fields and text labels)
VIEW COMPONENT: Qt Table

LIST (with columns)

As an example, Figure 5 describes a (partial) listing
of the generated code corresponding to the model
shown in Figure 2.

class Ui_Form(object):
def setupUi(self, Form):

Form.setObjectName(_fromUtf8("Form: Main Menu"))
Form.resize(68@, 739)
self.tabWidget = QtGui.QTabWidget(Form)
self.tabWidget.setGeometry(QtCore.QRect(30, 180, 621, 531))
self.tabWidget.setObjectName(_fromutf8('tabWidget"))
self.tab = QtGui.QWidget()
self.tab.setObjectName(_fromutf8("tab:Alarms"))
self.taurusForm = TaurusForm(self.tab)
self.taurusForm.setGeometry(QtCore.QRect(10, 10, 601, 471))
self.taurusForm.setObjectName(_fromutf8("“Alarm List"))
self.tabWidget.addTab(self.tab, _fromutfg(""))
self.Tab_2 = QtGui.QWidget()
self.Tab_2.setObjectName(_fromutf8("Tab:Logs"))
[aead
self.retranslateUi(Form)
self.tabWidget.setCurrentIndex(4)
QtCore.(QMetaObject.connectSlotsByName(Form)

def retranslateUi(self, Form):
Form.setWindowTitle(_transl Menu", "Main

, "Alarms",

m", "Alarms", None
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app - QtGui.QApplication(sys.argv)
Form = QtGui.QWidget()

i = Ui_Form()

ui.setupUi(Form)

Form.show()

sys.exit(app.exec_())

Figure 5 Generated code from IFML
conceptual model (excerpt)

CONCLUSIONS

Control of large-scale scientific infrastructures like
SKA requires coherent and effective user interfaces

that can be specified only through on usage-centered
development practices. Uls implemented through
model-driven development and automation of the
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When following an MDD approach, the running
application can be obtained through one or more

— model-to-model (M2M) and model-to-text (M2T) code_ generation  process 2zl qbtain highly
[ (D)Main Hens | transformations that subsequently produce designs, configurable and _yet standardized interfaces as
[¥oR|Alazas | [[xoR]zogs | implementation and test cases of the software. requ_eg’;ed. In this work we demonstrated the
P— Artefacts are (semi)-automatically generated using feasibility of the approach and we reported on the
L ossisiziie, wes ] transformations taking as input the models obtained implementation of a prototype of code generator.
" % in the previous phases. Future work will include the extension of the
| generator and field-testing of the generated
VT I interfaces.
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