
CODE GENERATION BASED ON IFML FOR THE USER CODE GENERATION BASED ON IFML FOR THE USER 
INTERFACES OF THE SQUARE KILOMETRE ARRAY (SKA)

M. Brambilla, S. Pavanetto, M. Gasparini, Politecnico di Milano, Milano, Italy
A. Marassi , R. Cirami, INAF-Astronomical Observatory of Trieste, Trieste, ItalyA. Marassi , R. Cirami, INAF-Astronomical Observatory of Trieste, Trieste, Italy

METHODSINTRODUCTION RESULTS

SKA Dish
The Square Kilometre Array (SKA) project is

Usability and Accessibility
We aim at maximizing usability and accessibility of

Starting from IFML models, our prototype implements
a full code generator for Qt/Taurus. TheThe Square Kilometre Array (SKA) project is

responsible for developing the SKA Observatory, the
world's largest radiotelescope ever built: eventually
two arrays of radio antennas - SKA1-Mid and SKA1-

We aim at maximizing usability and accessibility of
SKA- LMC user interfaces.

USAGE-CENTERED DESIGN

a full code generator for Qt/Taurus. The
implementation is written in Javascript, so as to be
fully integrated with IFMLedit.org.
The implementation of the generator is integrated

Low - will be installed in the South Africa's Karoo
region and Western Australia's Murchison Shire,
each covering a different range of radio frequencies.

USAGE-CENTERED DESIGN
We start by applying usage-centered design (UCD)
approaches1 for interactive software applications,
based on feedback offered by users, iterative

with the IFMLedit.org editor, and is available as open
source code on Github under the Apache 2.0 license:

In particular SKA1-Mid array will comprise 133 15m
diameter dish antennas observing in the 350 MHz-14
GHz range, each locally managed by a Local
Monitoring and Control (LMC) system and remotely

based on feedback offered by users, iterative
design, prototyping and evaluation based on
usability.2,3,4,5,6,7

All the DISH LMC GUIs Usage Centered Design

https://github.com/DataSciencePolimi/IFML-to-QT-Taurus-SKA

The generation process considers in input a simple
set of IFML items and builds a mapping to QT/TaurusMonitoring and Control (LMC) system and remotely

orchestrated by the SKA Telescope Manager (TM)
system.

All the DISH LMC GUIs Usage Centered Design
activities have been carried out as part of the tasks
performed in the so-called SKA pre-construction phase
by the SKA.DISH consortium (SKADC).

set of IFML items and builds a mapping to QT/Taurus
implementation elements in a straightforward way.
This table shows an excerpt of the most important
element mappings:by the SKA.DISH consortium (SKADC).

INAF – Catania Astrophysical Observatory, as
member of the SKA.DISH consortium, had the
responsibility of DISH LMC design, prototyping,

element mappings:

IFML CONCEPT QT IMPLEMENTATION

IFML MODEL Qt Gui

VIEW CONTAINER Qt Windowresponsibility of DISH LMC design, prototyping,
testing and validation.

VIEW CONTAINER Qt Window

NESTED VIEWCONTAINER Qt TabWidget
VIEW COMPONENT:

FORM (WITH FIELDS)

Qt Form

(with fields and text labels)In this work we apply conceptual modeling of user
interaction, focusing on expressing the content,
user interaction, and control behavior of the UI

FORM (WITH FIELDS) (with fields and text labels)
VIEW COMPONENT:

LIST

Qt Table

(with columns)

As an example, Figure 5 describes a (partial) listing
of the generated code corresponding to the model
shown in Figure 2.Figure 1 SKA Dish antenna overview

through visual diagrams that represent the navigation
paths of the user. Interactions have been modeled
using the standard Interaction Flow Modeling
Language (IFML)8. IFML is instrumental to provide a

Dish User Interfaces
In this work we have considered the Engineering

shown in Figure 2.Figure 1 SKA Dish antenna overview Language (IFML)8. IFML is instrumental to provide a
conceptual view of the user interfaces (see excerpt in
Figure 4), which can leads to automatic verification
and quick prototyping.

In this work we have considered the Engineering
interfaces used by DSH sub-elements engineers for
test,diagnostic,maintenance and, in particular, LMC
engineering interface, already identified and

and quick prototyping.
We exploit IFML as a conceptual modeling language,
and IFMLEdit.org as editing tool and implementation
platform for specifying a full model-driven

engineering interface, already identified and
specified in previous work1. An example is reported
in Figure 2.
LMC will provide GUIs to be used for testing and

platform for specifying a full model-driven
development process with automated code
generation for Qt/Taurus.
To this end, we apply the practices of model-driven

LMC will provide GUIs to be used for testing and
DISH control in stand-alone mode for testing,
commissioning and maintenance, offering basic
functionalities of DSH control & monitoring, set-up,

To this end, we apply the practices of model-driven
software development (MDD), which entails
automation of some of the steps of the development
process from a high level conceptual representation

functionalities of DSH control & monitoring, set-up,
control and testing, health monitoring, alarm
management, lifecycle support, direct access
monitoring in case of TM failure. Figure 5 Generated code from IFML

conceptual model (excerpt)

process from a high level conceptual representation
of the desired software features, down to deriving a
running application out of it, possibly through a set of
intermediate steps to enable customization (Fig. 3).

CONCLUSIONS

monitoring in case of TM failure.
conceptual model (excerpt)intermediate steps to enable customization (Fig. 3).

CONCLUSIONS

Control of large-scale scientific infrastructures likeControl of large-scale scientific infrastructures like
SKA requires coherent and effective user interfaces
that can be specified only through on usage-centered
development practices. UIs implemented throughWhen following an MDD approach, the running

Figure 3 The model-driven development process.

development practices. UIs implemented through
model-driven development and automation of the
code generation process can obtain highly
configurable and yet standardized interfaces as

When following an MDD approach, the running
application can be obtained through one or more
model-to-model (M2M) and model-to-text (M2T)
transformations that subsequently produce designs, configurable and yet standardized interfaces as

requested. In this work we demonstrated the
feasibility of the approach and we reported on the
implementation of a prototype of code generator.

transformations that subsequently produce designs,
implementation and test cases of the software.
Artefacts are (semi)-automatically generated using
transformations taking as input the models obtained implementation of a prototype of code generator.

Future work will include the extension of the
generator and field-testing of the generated
interfaces.

transformations taking as input the models obtained
in the previous phases.

REFERENCES

interfaces.

Figure 2 Sketch of DISH LMC engineering UI (top) 
and partial IFML conceptual model representing 

the UI part visible in the sketch (bottom) 

1. Marassi A., Brambilla M. et al., “The SKA Dish Local Monitoring and Control
System User Interface”, in Proc. SPIE Astronomical Telescopes +
Instrumentation, 2018, Austin, Texas, United States doi:10.1117/12.2313822.

the UI part visible in the sketch (bottom) 

Qt/Taurus code generator based on IFML
The Tango framework and its UI tools, selected for
SKA in 2015, support the types of basic control

Instrumentation, 2018, Austin, Texas, United States doi:10.1117/12.2313822.
2. Constantine, L. and Lockwood, L., [Software for Use: A Practical Guide to the

Models and Methods of Usage-Centered Design], Addison-Wesley
Professional, (1999).

3. Greenberg S., Carpendale S., Marquardt N. and Buxton B., [Sketching User
Experiences: The Workbook], Morgan Kaufmann, (2011).

SKA in 2015, support the types of basic control
interfaces currently used at both radio telescopes
and within high energy physics experiments. We aim
at the development of a Qt/Taurus code

Figure 4 The model-driven development process.
Experiences: The Workbook], Morgan Kaufmann, (2011).

4. Rosson M.B. and Carroll J.M., [Usability Engineering: Scenario-Based
Development of Human-Computer Interaction], Morgan Kaufmann, (2001).

5. Holzblatt K., Wendell J. and S. Wood, [Rapid Contextual Design: A How-to
Guide to Key Techniques for User-Centered Design], Morgan Kaufmann,
(2004)

More precisely, the IFML designer specifies the
conceptual interaction models in a visual model

at the development of a Qt/Taurus code
generator prototype based on the IFML
(Interaction Flow Modeling Language) standard
and respective modeling tools, that are extended for (2004)

6. Rubin J. and Chiswell D., [Handbook of Usability Testing: How to Plan, Design,
and Conduct Effective Tests], Wiley, (2008).

7. Preece J., Sharp H. and Rogers Y., [Interaction Design: Beyond Human-
Computer Interaction], Wiley, (2015).

conceptual interaction models in a visual model
editor, and automatic code generation can produce:
(a) a one-click interface generation, ready to be
deployed and executed; or (b) Human-in-the-loop

and respective modeling tools, that are extended for
supporting the platform-specific code generation,
thus enabling the use of low-code development in
SKA GUI design, with increased efficiency, reliability 8. Brambilla M. and Fraternali P. Interaction Flow Modeling Language: Model-

driven UI engineering of web and mobile apps with IFML. Morgan Kaufmann,
(2014).

deployed and executed; or (b) Human-in-the-loop
generation that produces an intermediate artifact to
be fed into QT/Taurus editors (Taurus Qt Designer).

SKA GUI design, with increased efficiency, reliability
and coherency of the produced UI.

ICALEPCS 2019, October 5-11, New York - NY


