CODE GENERATION BASED ON IFML FOR THE USER
INTERFACES OF THE SQUARE KILOMETRE ARRAY (SKA)

M. Brambilla, S. Pavanetto, M. Gasparini, Politecnico di Milano, Milano, Italy
A. Marassi, R. Cirami, INAF-Astronomical Observatory of Trieste, Trieste, Italy

INTRODUCTION

SKA Dish

The Square Kilometre Array (SKA) project is
responsible for developing the SKA Observatory, the
world's largest radiotelescope ever built: eventually
two arrays of radio antennas - SKA1-Mid and SKA1-
Low - will be installed in the South Africa's Karoo
region and Western Australia's Murchison Shire,
each covering a different range of radio frequencies.
In particular SKA1-Mid array will comprise 133 15m
diameter dish antennas observing in the 350 MHz-14
GHz range, each locally managed by a Local
Monitoring and Control (LMC) system and remotely
orchestrated by the SKA Telescope Manager (TM)
system.

Shielded compartment with:

- 5aDT equipment

Figure 1 SKA Dish antenna overview

Dish User Interfaces

In this work we have considered the Engineering
interfaces used by DSH sub-elements engineers for
test,diagnostic,maintenance and, in particular, LMC
engineering interface, already identified and
specified in previous work!. An example is reported
in Figure 2.

LMC will provide GUIs to be used for testing and
DISH control in stand-alone mode for testing,
commissioning and maintenance, offering basic
functionalities of DSH control & monitoring, set-up,
control and testing, health monitoring, alarm
management, lifecycle support, direct access
monitoring in case of TM failure.

SKADSHLMC

LMC | 0s] [Rx | [seec

Log s\{ Alarms‘!\rchive\ States/Modes/Health \ Monitor\l Gontrol\

[5% My Liken s arEE|
e E3 Locs B

Tene Mo |Gelus Ack | Mossege | Aconawiodim
| Moy Sep T9 102320 2005 Simscs1 20k NORMAL RIOT ATE ecied
Mo fap e 1035100 IO3E efoecolicllfl ALARM MK, macsgpa o 3 F o P S
| M Sap 10 1O.P5. 20 2055 a-fmaccln] Mok FANMAL N3 ADN a3

-b'-; sep I 1CZ25I0 1023 w pnc el A LWL B ACK r

| Vs Sl TR TCEIY S0 TS SN AR T ANAUE TENBAL VDT AZK

|Wen Sop 19102550 2035 wimedisLabf MARM NOTASK mererogo dipraw

| Mo Sep 18 102540 2028 simcdisLATaut NORMAL NST AZK

|Mon Seo' 11012940 2005 shoscak1Gaf ALARM NSTACK messeosa diprove

| Moy Sop ¥ 10 280 305 sodme s Tiank ARIERAL hIOYT ATk

ruﬁsiu,ﬂmﬂdﬂ AIIE s dlal. Vel ALARM RDT ADY mlm e

[Hon Gep 56 1055 20 TO0% & fpme cikk Qiafl | AEARIT TIST_ASH ssnrgiha oo

| M Sep FRLOZS L H00S e ae el MG ALRANM DT ACK rrosipeel cRprce

METHODS

Usability and Accessibility

We aim at maximizing usability and accessibility of
SKA- LMC user interfaces.

USAGE-CENTERED DESIGN

We start by applying usage-centered design (UCD)
approaches! for interactive software applications,
based on feedback offered by users, iterative
design, prototyping and evaluation based on
usability.23:4>6.7

All the DISH LMC GUIls Usage Centered Design
activities have been carried out as part of the tasks
performed in the so-called SKA pre-construction phase
by the SKA.DISH consortium (SKADC).

INAF - Catania Astrophysical Observatory, as
member of the SKA.DISH consortium, had the
responsibility of DISH LMC design, prototyping,
testing and validation.

In this work we apply conceptual modeling of user
interaction, focusing on expressing the content,
user interaction, and control behavior of the Ul
through visual diagrams that represent the navigation
paths of the user. Interactions have been modeled
using the standard Interaction Flow Modeling
Language (IFML)3. IFML is instrumental to provide a
conceptual view of the user interfaces (see excerpt in
Figure 4), which can leads to automatic verification
and quick prototyping.

We exploit IFML as a conceptual modeling language,
and |IFMLEdit.org as editing tool and implementation
plattorm for specifying a full model-driven
development process with automated code
generation for Qt/Taurus.

To this end, we apply the practices of model-driven
software development (MDD), which entails
automation of some of the steps of the development
process from a high level conceptual representation
of the desired software features, down to deriving a
running application out of it, possibly through a set of
intermediate steps to enable customization (Fig. 3).

_ M2M _ M2T -
Requirements 2| Design , > Implementation

M2T

Testing

Figure 3 The model-driven development process.

RESULTS

Starting from |[FML models, our prototype implements
a full code generator for Qt/Taurus. The
Implementation is written in Javascript, so as to be
fully integrated with IFMLedit.org.

The implementation of the generator is integrated
with the IFMLedit.org editor, and is available as open
source code on Github under the Apache 2.0 license:

https://qithub.com/DataSciencePolimi/IFML-to-QT-Taurus-SKA

The generation process considers in input a simple
set of IFML items and builds a mapping to QT/Taurus
implementation elements in a straightforward way.
This table shows an excerpt of the most important
element mappings:

IFML CONCEPT QT IMPLEMENTATION
IFML MODEL Qt Gui

VIEW CONTAINER Qt Window

NESTED VIEWCONTAINER Qt TabWidget

VIEW COMPONENT: Qt Form

FORM (WITH FIELDS) (with fields and text labels)
VIEW COMPONENT: Qt Table

LIST (with columns)

As an example, Figure 5 describes a (partial) listing
of the generated code corresponding to the model
shown in Figure 2.

class Ui_Form(object):
def setupUi(self, Form):

Form.setObjectName(_fromUtf8("Form: Main Menu"))
Form.resize(68@, 739)
self.tabWidget = QtGui.QTabWidget(Form)
self.tabWidget.setGeometry(QtCore.QRect(30, 180, 621, 531))
self.tabWidget.setObjectName(_fromutf8('tabWidget"))
self.tab = QtGui.QWidget()
self.tab.setObjectName(_fromutf8("tab:Alarms"))
self.taurusForm = TaurusForm(self.tab)
self.taurusForm.setGeometry(QtCore.QRect(10, 10, 601, 471))
self.taurusForm.setObjectName(_fromutf8("“Alarm List"))
self.tabWidget.addTab(self.tab, _fromutfg(""))
self.Tab_2 = QtGui.QWidget()
self.Tab_2.setObjectName(_fromutf8("Tab:Logs"))
[aead
self.retranslateUi(Form)
self.tabWidget.setCurrentIndex(4)
QtCore.(QMetaObject.connectSlotsByName(Form)

def retranslateUi(self, Form):
Form.setWindowTitle(_transl Menu", "Main

, "Alarms",

m", "Alarms", None

IIM l
"For

ate(
self.tab.setToolTip(_translate(
self.tab.setWhatsThis(_translat
[lll]

ain
O ITI"
e("For

taurus.qt.qgtgui.panel TaurusForm

) Sys
app - QtGui.QApplication(sys.argv)
Form = QtGui.QWidget()

i = Ui_Form()

ui.setupUi(Form)

Form.show()

sys.exit(app.exec_())

Figure 5 Generated code from IFML
conceptual model (excerpt)

CONCLUSIONS

Control of large-scale scientific infrastructures like
SKA requires coherent and effective user interfaces

that can be specified only through on usage-centered
development practices. Uls implemented through
model-driven development and automation of the

|Mers sep TH 1IN 2035 S ASC SN ALARM NITADK resSepd dipiow

When following an MDD approach, the running
application can be obtained through one or more

— model-to-model (M2M) and model-to-text (M2T) code_ generation process 2zl qbtain highly
[(D)Main Hens | transformations that subsequently produce designs, configurable and _yet standardized interfaces as
[¥oR|Alazas | [[xoR]zogs | implementation and test cases of the software. requ_eg’;ed. In this work we demonstrated the
P— Artefacts are (semi)-automatically generated using feasibility of the approach and we reported on the
L ossisiziie, wes] transformations taking as input the models obtained implementation of a prototype of code generator.
" % in the previous phases. Future work will include the extension of the
| generator and field-testing of the generated
VT I interfaces.
Figure 2 S_ketCh of DISH LMC engineering Ul (.tOp) IFML Model >| QT/Tauruscode dep X[Ul execution
and partial IFML conceptual model representing T o T REFERENCES
the Ul part visible in the sketch (bottom) - MOT -
Qt/Taurus code generator based on IFML - Tau[:r;ji:dm < g b 1. Marassi A., Brambilla M. et al., “The SKA Dish Local Monitoring and Control
The Tango framework and its Ul tools, selected for |F’ML Taurus User of the System User Interface’, in Proc. SPIE Astronomical Telescopes +
_ : designer desic control Instrumeptatlon, 2018, Austin, Texas, United States d0|.10.111_7/12.23_13822.
SKA in 2015, support the types of basic control esigner interface 2. Constantine, L. and Lockwood, L., [Software for Use: A Practical Guide to the

Models and Methods of Usage-Centered Design], Addison-Wesley
Professional, (1999).

I ~Ari 3. Greenberg S., Carpendale S., Marquardt N. and Buxton B., [Sketching User
Flgure 4 The model-driven development Process. Experiences: The Workbook], Morgan Kaufmann, (2011).

at the development of a Qt/Taurus code 4. Rosson M.B. and Carroll J.M., [Usability Engineering: Scenario-Based

interfaces currently used at both radio telescopes
and within high energy physics experiments. We aim

enerator rototvpe based on the IFML : : . £ Development of Human-Computer Interaction], Morgan Kaufmann, (2001).
9 . P yP : More precisely, the |IFML designer specifies the 5. Holzblatt K., Wendell J. and S. Wood, [Rapid Contextual Design: A How-to
(Interactlon. Flow Mgdellng Language) standard conceptual interaction models in a visual model (c;lé.g:) to Key Techniques for User-Centered Design], Morgan Kaufmann,
and respectlve mOdelmg tOOIS’ that are extended for editor, and automatic code generation can produce: 6. Rubin J. and Chiswell D., [Handbook of Usability Testing: How to Plan, Design,

supporting the platform-specific code generation,
thus enabling the use of low-code development In
SKA GUI design, with increased efficiency, reliability
and coherency of the produced UI.

and Conduct Effective Tests], Wiley, (2008).
7. Preece J., Sharp H. and Rogers Y., [Interaction Design: Beyond Human-
Computer Interaction], Wiley, (2015).

(a) a one-click interface generation, ready to be
deployed and executed; or (b) Human-in-the-loop

. . - - 8. Brambilla M. and Fraternali P. Interaction Flow Modeling Language: Model-
genera_thn that produce§ an intermediate a_rtlfaCt to driven Ul engineering of web and mobile apps with IFML. Morgan Kaufmann,
be fed into QT/Taurus editors (Taurus Qt Designer). (2014).

ICALEPCS 2019, October 5-11, New York - NY

