
AN EMBEDDED IOC for 100-MeV CYCLOTRON RF CONTROL

Hardware Design of the embedded Controller

Z.G. Yin†, X.L. Fu, X.T. Lu, T.J. Zhang, China Institute of Atomic Energy, Beijing, China 
X.E. Mu, North China University of Technology, Beijing, China

ABSTRACT
An ARM9 based embedded controller for 100MeV cyclotron RF control has been successfully developed and tested with
EPICS control software. The controller is implemented as a 3U VME long card, located in the first slot of the LLRF control
crate, as a supervise module that continuously monitors the status of the RF system through a costume designed
backplane and related ADCs located on other boards in the crate. For high components density and signal integrate
considerations, the PCB layout adopts a 6 layers design. The Debian GNU/ Linux distribution for the ARM architecture has
been selected as an operating system for both robustness and convenience. EPICS device support, as well as Linux driver
routings, has been written and tested to interface database records to the onboard 12 multichannel 16bits ADCs and DACs.
In the meantime, a chip selecting encoding-decoding strategy has been implemented from both soft-ware and hardware
aspects to extend the SPI bus of the AT91SAM9g20 processor. The detailed software, as well as hardware designed, will
be reported in this paper.

Conclusion
This embedded IOC is developed in late 2013 and goes online in early 2014. Together with the cyclotron LLRF control, it has been
put into continuous operation for 24/7 after the commissioning of the cyclotron on May 4, 2014. Operational experience shows the
design is stable and reliable. The embedded IOC was specially developed for the LLRF system of CYCIAE-100 cyclotron, yet the
technology involved can be valuable for similar control systems.

China Institute of Atomic Energy 17th Annual International Conference on Accelerator 
and Large Experimental Physics Control Systems

SPI device driver The OPI

ARM9 series processors combine the advantages of high computational power with a small footprint. It also provides 
advantages such as high reliability and low power consumption. These features make it ideal for embedded controller 
design. In recent years, IOC based on ARM9 processor has been widely adopted for the control of many large scientific 
devices around the world. For the hardware designs of the IOC described in this paper, an AT91SAM9g20 processor has 
been selected as the central processing unit. Besides, the hardware design also includes 64MB SDRAM as memory, 
selects NAND FLASH and SD card to store OS and data. Other related hardware resources are one USB bus, two serial 
ports, two SPI interfaces, one Ethernet, 40 GPIO, etc.

In the early stage, especially in the system development phase, this
OPI interface was developed using Pyepics and PyQt frameworks.
In the new OPI, we use the LED animation to display the switch
status and use the text control to display the RF system information
such as the Dee voltage, Driven amplitude, and phase, etc.

The hardware design of 100MeV IOC system modified the Chip 
Selection of SPI bus, the Linux kernel driver should be adjusted 
accordingly to enable system-level functionality. 
The standard version implementation doesn’t include the feature 
of chip select extending, therefore line by line read and 
modification of the code has to be done. The first step is to add an 
atmel_spi_data structure to describe which GPIO they use as CS 
line and as well to enable or not the use of the CS decode feature. 
Secondly, the at91_add_device_spi() has been revamped, it is 
now used to add an SPI *controller* device only. The boards need 
to register their SPI devices with spi_register_board_info(). The 
third step is to modify the relevant code in the atmel_spi.c file 
under the Linux-2.6.38/drivers/spi/ folder, to add decoding 
support for the driver. Lastly, it is needed to modify the board 
support level definition file board-sam9g20ek.c under the Linux-
2.6.38/arch/arm/match-at91/ folder, register the extended SPI 
device to the Linux device tree and initialize the 16 devices in the 
board level.


