

## **CAUSE-AND-EFFECT MATRIX SPECIFICATIONS FOR SAFETY CRITICAL** SYSTEMS AT CERN

B. Fernández, E. Blanco, M. Charrondiere, O. Ditsch, R. Speroni CERN, Geneva, Switzerland H. Hamisch, M. Bonet, M. H. de Queiroz, Universidade Federal de Santa Catarina, Florianópolis, Brazil

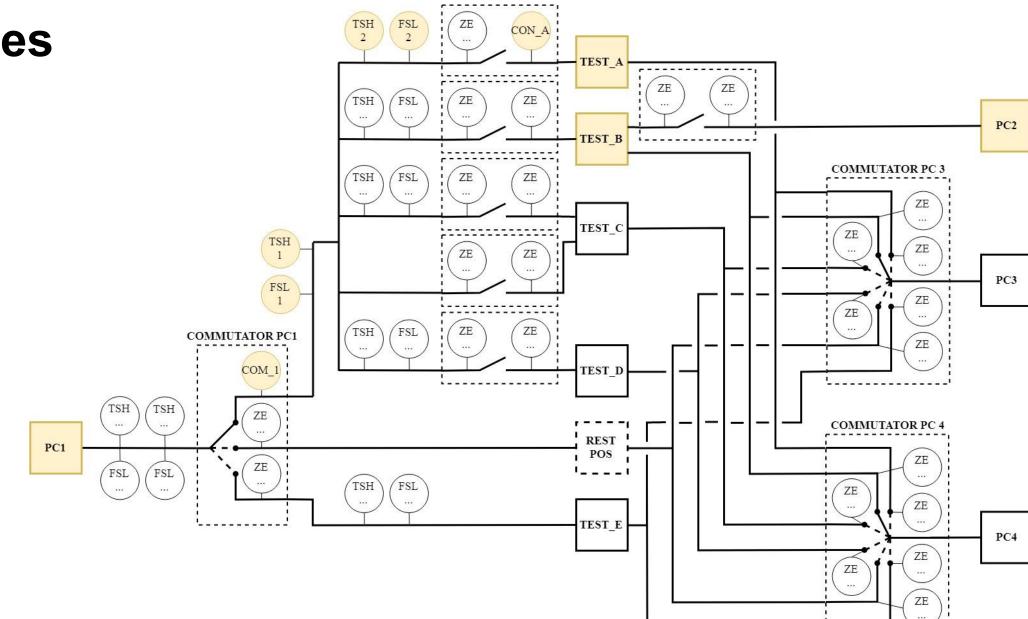
# Motivation

How?

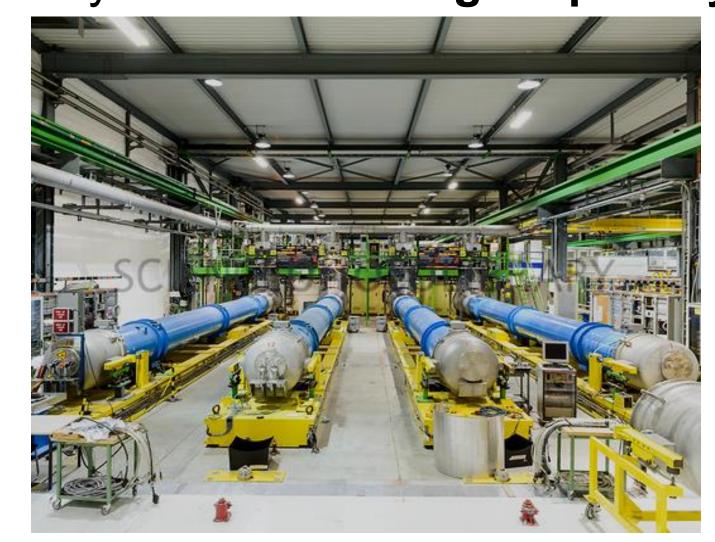
- Provide a simple, unambiguous and compact specification method to express interlock logic
- Potential use cases:
  - Safety Instrumented Systems (SIS)
  - Any interlock system with stateless logic

**Cause and Effect Matrix (CEM)** a compact and intuitive graphical representation of **Boolean expressions** 

 $[I01 \lor TON(I02, 20s) \lor (\neg I03 \land I04)]$ Q01 $I02 \wedge (I03 \vee \neg I04)$ Q02


|       | Effect | Q01   | Q02   |
|-------|--------|-------|-------|
| Cause |        |       |       |
| I01   |        | X     |       |
| I02   |        | TON20 | A1,A2 |
| I03   |        | NA1   | A1    |
| I04   |        | A1    | NA2   |

**MOPHA041** 


# Case Study – A CERN magnet test bench facility

Facility to **test new magnet prototypes** 

#### **Process description**



5 test benches and 4 different



#### power converters

- Several hazards of electrical and cryogenic nature
- Specification divided in **Operational requirements** and **Safety requirements**

#### **Safety requirements**

Unambiguous but no tool support

| Reference                   | SIF1                                                                                                                                                       |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Related risk                | Risk analysis reference 1                                                                                                                                  |
| Functionality               | Shutdown the power converter if the corresponding temperature of the water-cooled cable is high ( <i>FALSE</i> ) or the water flow is low ( <i>FALSE</i> ) |
| Formalized<br>functionality | $ \begin{array}{l} If \ (COM\_1 \land CON\_A \land (\neg TSH1 \\ \lor \neg TSH2 \lor \neg FSL1 \lor \neg FSL2)) \\ Then \ PC1\_PP = 0 \end{array} $        |
| Safety Level                | SIL2                                                                                                                                                       |
| Operation mode              | Low demand                                                                                                                                                 |

PLC program

implementation out of the CEMs

SIF1

### **Operational requirements**

Simple but ambiguous specification

|         | Condition |    | Test_A                               | Test_B                                    |
|---------|-----------|----|--------------------------------------|-------------------------------------------|
| SCADA   | SEL_PC    |    | PC1 / PC3 / PC4                      | PC1 / PC2 / PC3 / PC4                     |
|         |           |    |                                      |                                           |
| Process | CRYO_A    |    | 1                                    |                                           |
| Sensor  | CRYO_B    |    |                                      | 1                                         |
|         | DAQ_A     |    | 1                                    |                                           |
|         | DAQ_B     |    |                                      | 1                                         |
|         |           |    |                                      |                                           |
| Process | PC1_OPER  | if | PC1, 1 when all conditions fulfilled | I if PC1, 1 when all conditions fulfilled |
|         | PC2_OPER  |    |                                      | if PC2, 1 when all conditions fulfilled   |
|         |           |    |                                      |                                           |

A1

TEST\_B

| (a) Top Operational CEM |        |                |          |   |
|-------------------------|--------|----------------|----------|---|
|                         | Effect | PC1_OPER       | PC2_OPER |   |
| Cause                   |        |                |          | ( |
| SEL_PC1                 |        | A1,A2,A3,A4,A5 |          |   |
| SEL_PC2                 |        |                | A1       |   |

A1

A2

A3

A4

A5

TEST\_A

(c) Bottom Operational CEM

Effect

| (b) Top Safety CEM |       |        |        |        |
|--------------------|-------|--------|--------|--------|
|                    |       | Effect | PC1_PP | PC2_PP |
|                    | Cause |        |        |        |
|                    | SIF1  |        | NA1    |        |
|                    | SIF2  |        | NA1    |        |

NA1

NA1

A1

SIF2

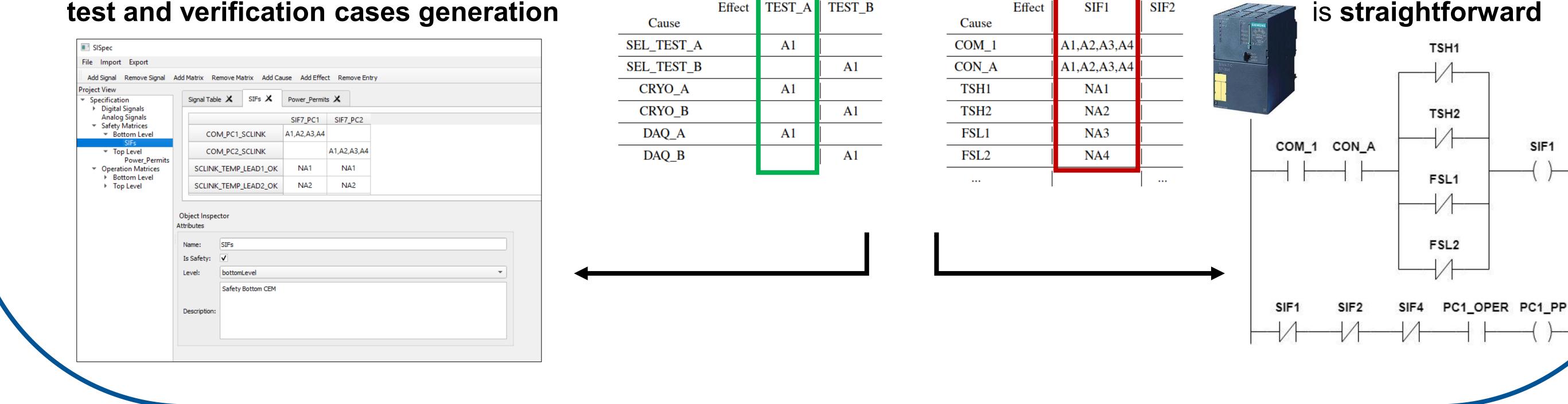
NA1

A1

SIF1

(d) Bottom Safety CEM

Effect


SIF3

SIF4

PC1\_OPER

PC2\_OPER

### SISpec tool Graphical editor for CEMs and test and verification cases generation



SEL

SEL

TEST\_A

TEST\_B

TEST\_C

TEST\_D

TEST\_E

# **Conclusions and future**

|  | nros |
|--|------|
|  |      |
|  |      |

#### **CEM** cons

#### **Future directions**

#### 

- Simple and graphical mechanism
- Allows a **better communication** between control, process and safety experts
- Trivial generation of the PLC code
- Allows automatic generation of test and verification cases
- Improved maintainability of the PLC code and **traceability** of the whole project
- Not appropriate for all types of processes. Mainly convenient for stateless interlock logic
- Certain Boolean logic may be difficult to express in one single CEM (auxiliary CEMs may have to be Included)

Extension of the **CEM semantics** to different activation logics (rising) edges, pulses, etc.)

PLC code generation and • integration in the development cycle of SISs and interlock-based control systems

**CERN Beams Department** Industrial Controls and Safety Systems Group (ICS)