
Improving User Information
by Interfacing the Slow Control's

Log and Alarm Systems
to a Flexible Chat Platform

Abstract

Research groups operating large experi-

ments are often spread out around the globe,

so that it can be a challenge to stay in-

formed about current operations. We have

therefore developed a solution to integrate a

slow control system's alarm and logging

systems with the chat system used for com-

munication between experimenters. This

integration is not intended to replace a con-

trol screen containing the same information,

but offers additional possibilities:

∙ Instead of having to open the control sys-

tem's displays, which might involve setup

work (VPN, remote desktop connections,

…), a web interface or an app can be used

to track important events in the system.

∙ Messages can easily be filtered and routed

to different recipients (individual persons

or chat rooms).

∙ Messages can be annotated and com-

mented on.

The system presented uses Apache Camel

to forward messages received via JMS to

Rocket.Chat. Since no binding to Rocket.-

Chat was available, this interface has been

implemented. On the sending side, a C++

logging library that integrates with EPICS

IOCs and interfaces with JMS has been de-

signed.

Active Pixel Detector

DEPFET

Michael Ritzert (Heidelberg University, Heidelberg)
For the Belle II PXD collaboration.

Rocket.Chat

Integration

For the output to Rocket.Chat, a new mod-

ule has been implemented in Java. It uses

the REST API to post messages. Since the

protocol is stateless, it is easy to implement.

There is only a single HTTP request per

posted message.

The actual implementation consists of two

parts: A small, generic module implement-

ing the posting of messages to Rocket.Chat,

and a second module that wraps around it to

provide the interfaces as required by Camel.

Logging Library

We implemented a C++ library for logging

via ActiveMQ. The STOMP protocol is

used to send the message to Active-MQ,

where it is converted to the JMS format also

used by the alarm system.

When included in an EPICS IOC, IOC

Shell commands are available to configure

the logging to different sinks (console, log-

file, STOMP). The minimum log levels per

message source and sink can be adjusted at

runtime.

A threaded design is used to decouple the

main thread from the potentially time-con-

suming output operations, and avoid block-

ing the normal operation of the IOC.

Rocket.Chat displaying messages from the logging and alarm systems.

Log Messages Alarm Events

ActiveMQ

Message Transformation

Message Routing

Message Filtering

Message Reception

Message Output

Rocket.Chat

M
e
ssa

g
e
G
a
te
w
a
y

Overview of the Implemented System.

17th International Conference

on Accelerator and Large Experimental

Physics Control Systems

Brooklyn, NY, USA

October 2019

System Overview

The gateway combines data from the

BEAST alarm system and the message log.

Both systems are configured to publish their

messages via the ActiveMQ message bro-

ker, that is central to the distribution of all

messages in the system. The gateway is reg-

istered as a listener on the respective chan-

nels. It receives all messages, filters them

and forwards to the Rocket.Chat server.

The gateway is implemented based on

Apache Camel, a message routing engine

implemented in Java. Received messages

are passed through several modules con-

nected to build a route.

For Message Reception, a module to re-

ceive from ActiveMQ is readily available.

Filtering is performed in a Java module to

accept only messages related to the trigger-

ing of an alarm condition, and messages

with high log levels.

Messages can then be routed to different

recipients (channels or individual persons).

The routing is implemented in Java and has

full access to all message metadata.

For posting to Rocket.Chat, the messages

have then to be transformed from the na-

tive BEAST and log formats with all meta-

data to plain text.

Finally, the messages are output to

Rocket.Chat. In case the messages have

been tagged accordingly, i.e. with @here,

the Rocket.Chat server notifies the users.




