
A PyDM USER INTERFACE FOR AN LCLS SIMULATOR
M. Gibbs∗, W. Colocho, J. Shtalenkova, A. Osman, H. Slepicka

SLAC National Accelerator Laboratory, Menlo Park, USA

Abstract
PyDM (Python Display Manager) is a framework for

building control system user interfaces. A user interface
for the LCLS (Linac Coherent Light Source) simulator has
been built in PyDM. The simulator interface gives a realistic
experience of operating many parts of the LCLS accelera-
tor, and can be used for training new accelerator operators
on routine tasks. This interface also provides a good demon-
stration of the experience of using PyDM in a real-world
environment.

SIMULACRUM: AN LCLS SIMULATOR
Recently at the SLAC National Accelerator Laboratory,

an LCLS accelerator simulation system called Simulacrum
has been developed. This simulator runs an accelerator
model, and uses the model to populate EPICS PVs that
mimic the real accelerator. The goal of Simulacrum is to
let users take unmodiied accelerator software applications
used to operate LCLS, and run them against a simulator that
could be running on a development server, or even on a
user’s laptop. The reverse is also true: users can develop
new applications or displays against Simulacrum, using the
same code that they would to interact with the real acceler-
ator’s control system.

While Simulacrum was originally developed as an aid in
developing accelerator software, but it has also been iden-
tiied as a training tool for operators. It can help new op-
erators gain some intuition of how the electron beam be-
haves, and let them explore in an environment free of the
time pressure and up-time demands that come with a facil-
ity delivering beam to user experiments. Rather than just
reading training documents and procedures, the tools used
to operate the machine can be used in the simulation.

PyDM
PyDM [1] is a framework for building control system

graphical user interfaces (GUIs). PyDM is built with Qt [2]
and the PyQt [3] Python-Qt bindings. It is packaged with
a set of widgets appropriate for interacting with scientiic
and industrial equipment. PyDM is also highly extensible
by users, who can add new widgets, support for new data
sources, and add custom client-side logic to control system
displays. At SLAC, some portions of the GUI used to run
the LCLS accelerator are being replaced with new PyDM-
based displays. Simulacrum is being use to test the new
displays while most of the control system is oline during
facility upgrades. The PyDM simulator interface presented
here shares many of the same iles that will be used for the
real LCLS accelerator.
∗ mgibbs@slac.stanford.edu

AUTO-GENERATION OF DISPLAYS
FROM DEVICE LISTS

PyDM displays can use Python code to build themselves
from lists of devices. In this interface, each display queries
an EPICS PVAccess table PV for a list of relevant device
types, and generates user interface elements for every item
in the list. By using this method, the same interface iles
can be used against any accelerator lattice deinition used
by the simulator.

PyDM’s Template Repeater Widget is used frequently in
these displays. This widget takes a user interface ile repre-
senting the controls for a single device, along with a list of
devices supplied as a list of Python dictionaries, and renders
the user interface ile once for each item in the list.

DISPLAYS
The top-level interface is organized by area and subsys-

tem, laid out in a grid. For example, a user might select the
column corresponding to ”LI25” (linac sector 25), and the
row corresponding to ”Magnets”. This will take the user to
a listing of all magnets in the simulated sector 25. PyDM’s
browser-like navigation tools let the user page forward and
backward through displays they have visited, or go directly
back to the top-level ”Home” display.

An alarm tree in the simulator collects low-level alarms
into summary alarms. These summary alarms are propa-
gated through the displays, up to the top level, allowing the
user to quickly identify and traverse the displays to ind the
relevant screen to address the alarm.

Magnets
The magnet displays are organized in tabs for each type of

magnet. In each tab is a straightforward list of controls, one
row for each magnet. The controls provide the basic func-
tions one would expect: magnet strength can be changed,
via a line edit widget or slider. Other functions, saving the
magnet ield setpoint, or loading a saved setpoint, are avail-
able from a drop-down menu.

Collimators
The collimator displays contain controls to move collima-

tor jaws directly, or set ’center’ and ’gap’ values that move
two jaws together. The collimator displays utilize PyDM’s
”Widget Rules” feature to animate a schematic of the colli-
mators: the on-screen position of two widgets representing
the collimators are bound to the PVs that report the collima-
tor jaw positions.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH4002

User Interfaces, User Perspective, and User Experience(UX)
WESH4002

1525

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



RF
The RF displays show information and control for the

klystrons in the simulation. Each klystron has controls for a
phase shifter, controls for the klystron’s high voltage power
supply, and many status readbacks for klystron interlocks.

Tuning
The tuning display shows a plot of simulated x-ray pulse

intensity versus time. Along with the intensity plot are con-
trols for commonly-used magnets for tuning the pulse inten-
sity. The display uses Python code to save ”checkpoints”
from which one can re-load magnet settings.

Beam Position Monitors
The beam position monitor displays plot the electron

beam’s position using a custom widget, described in de-
tail in the next section. Python code is used to fetch the
z-positions of each beam position monitor along the beam
line in the selected area, and set the viewing range of the
beam position plot accordingly.

CUSTOM WIDGETS
The ”Steering” display, and the custom beam position it

utilizes is an example of highly specialized, task-speciic
code that can be embedded in a PyDM display. The Steer-
ing widget draws a pan-and-zoomable plot of 176 beam
position monitor values that update in real time. Super-
imposed on the plot are buttons to increment and decre-
ment dipole corrector magnet strengths to adjust the elec-
tron beam’s trajectory. The code for this display was ex-
tracted from a stand-alone PyQt electron beam orbit display
application, and can now be embedded and re-used in any
display where a real-time view of the orbit (or a portion of
it) is desired. While in the simulator, the beam’s position
is updated at less than 10 Hz, this widget has been used to
display real orbit data at 60 Hz.

CONCLUSION
A set of PyDM displays were created as a graphical user

interface to Simulacrum, an LCLS accelerator simulator.
The accelerator simulator provides an ideal test-bed for con-
trol system screens, and includes a large variety of the wid-
gets and data types that would be used in a real control sys-
tem. A custom widget for linac beam steering have been

Figure 1: Linac Steering Widget in PyDM. The beam’s
transverse position (in the X or Y axis, depending on the
panel being used) is plotted as a green bar. Below the plot of
beam position measurements, increment/decrement controls
for each corrector magnet are displayed. By clicking and
dragging the plot, the user can pan the view to see different
areas. Zooming in and out is possible by scrolling with
the mouse wheel or trackpad.

added (see Fig. 1), demonstrating some of PyDM’s potential
as a platform for high-level application development. The
interface closely resembles the real LCLS accelerator user
interface, and is a good tool for training purposes. The
simulator interface will also be used for community outreach
activities, to give the public a glimpse at operating a particle
accelerator.

ACKNOWLEDGMENTS
The authors would like to thank all of the contributors to

PyDM.

REFERENCES
[1] M. Gibbs and H. Slepicka. (2019). PyDM - Python Display

Manager, https://slaclab.github.io/pydm/
[2] The Qt Company. (2019). Qt, https://www.qt.io
[3] Riverbank Computing Limited. (2019). PyQt, https://

riverbankcomputing.com/software/pyqt/intro

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH4002

WESH4002
1526

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

User Interfaces, User Perspective, and User Experience(UX)


