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Abstract

The MeerKAT Control and Monitoring(CAM) solution

is a mature software system that has undergone multiple

phases of construction and expansion. It is a distributed

system with a run-time environment of 15 logical nodes

featuring dozens of interdependent, short-lived processes

that interact with a number of long-running services. This

presents a challenge for the development team to balance

operational goals with the continued discovery and devel-

opment of useful enhancements for its users (astronomers,

telescope operators). Continuous Delivery is a set of prac-

tices designed to always keep software in a releasable state.

It employs the discipline of release engineering to optimise

the process of taking changes from source control to produc-

tion. In this paper, we review the current path to production

(build, test and release) of CAM, identify shortcomings and

introduce approaches to support further incremental devel-

opment of the system. By implementing patterns such as

deployment pipelines* and immutable release candidates

we hope to simplify the release process and demonstrate

increased throughput of changes, quality and stability in the

future.

INTRODUCTION

The Control and Monitoring Subsystem (CAM) for the

MeerKAT radio telescope consists of many different soft-

ware components that work in tandem to allow operation of

the telescope as a single, cohesive instrument[1]. However,

the large amount of moving parts and differentiation presents

a challenge in terms of software engineering complexity1.

So far, this has been mitigated by leveraging virtualisation

with automated deployments[3], as well as continuous in-

tegration and automated testing[4]. This has worked well,

allowing the software team to adopt an incremental devel-

opment model for extending the system. Enhancements are

developed and released, usually 2-3 months apart2.

The “Last Mile”

Despite having a high level of automation, the process

of releasing newly developed functionality has not been

problem-free. Misconfiguration, exceptional states and er-

rors still manifest during some deployments. These prompt

∗ Work supported by South African Radio Astronomy Observatory, Na-

tional Research Foundation
† swai@ska.ac.za
1 The system design itself has proven to be robust as it is extensible: CAM

has been chosen as the reference architecture for the Square Kilometre

Array’s Telescope Manager[2].
2 At the time of writing (September 2019), version 23 of CAM system was

deployed to production.

long, arduous fault-finding and troubleshooting efforts for

the System Team3 during releases.

Fortunately, releases are scheduled on “maintenance” days

during which science operations are ceased so that engineer-

ing teams can work on the relevant subsystems and on-site

maintenance – such as replacing of physical parts – can take

place. This gives a window of opportunity for deploying

CAM to site, with a full deployment (and verification activi-

ties) taking 2-3 hours in the best case scenario, but can take

up the full day if issues are encountered.

This is a common problem in software development: the

presence of bottlenecks, often in the final stages of software

development lifecycle (the “last mile”)4. Continuous Deliv-

ery[5] offers an approach to software delivery that addresses

these problems by focusing on engineering for feedback,

early and frequently. Some informal analysis was under-

taken with this in mind to identify some of the root causes

of the problems. They are outlined below:

Gaps in Automated Testing In spite of the sophisti-

cated integration testing in place by the Automated Qual-

ified Framework(AQF)[4], it failed to catch some cate-

gories of errors. AQF tests are executed in a static, single-

node environment that is only partially deployed on each

run: a python script, kat-update.py would pull the latest

master branch of all CAM Python packages on the AQF

node. In this scenario, the full deployment procedure is

not exercised, thus some problems relating to configuration

changes outside of code changes to Python packages cannot

be discovered in AQF. Additionally, since it was a long-

lived static environment it was vulnerable to configuration

drift[6].

Build Provenance A consequence of running AQF on

a scheduled timer instead of being triggered by changes,

is that the provenance of a test result depends on the state

of master at the time it was run and completed. Once an

AQF test execution succeeds, a special branch (stable) is

updated to mirror the state of master, for all relevant CAM

packages on the AQF node. Given that an AQF run can take

up to 3-4 hours, there is risk that the state of master at the

time of completion is not the same as when the tests began5.

3 A subset of the Software Team responsible for deployment of the CAM

subsystem and overall health of the datacentre servers running CAM.
4 It is apparent that continuous integration alone is insufficient, as most of

the problems occur when trying to release already integrated code to the

users.
5 Fortunately, the team is small enough that this is addressed through clear

communication and coordination of “code freezes” at the appropriate

times.
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The deployment of the

system is orchestrated by a collection of Python Fabric

scripts that are responsible for provisioning CAM nodes to a

target group[3]. Provisioning means to enact the following

operations in order:

1. Boot up the VMs on the target environment’s Proxmox

cluster that correspond to the nodes in the configuration

database

2. Sequentially apply some actions, based on the roles

assigned to the node

3. Install the appropriate Python packages from the re-

quirements file (specified as an argument)

A significant problem the team recognised is that not

all packages were pinned to any particular version. The

versioning of CAM’s own Python packages are signified

by release branch rather than pinned to specific versions.

This is problematic, since every deployment has a chance

of pulling different transitive dependencies that may over-

ride the initial specification. A suboptimal workaround is

in place that exploits the imperative execution style of the

scripts: by strategically specifying the packages in an order

that works. This was not ideal, however relying on release

branches as the primary versioning strategy did allow the

team to mitigate some of the issues, at the cost of addi-

tional complexity (package version can be updated directly

in source control). Automated scripts, even when written

imperatively, are immensely powerful first step to optimising

deployments. However, because many sequences of actions

are not idempotent when executed together, changes are dif-

ficult to manage and their effects tricky to predict6. This

was a source of many problems during deployments, due to

reliance on a large set of brittle scripts that are opaque in

their intended outcome.

Late Integration The katconfig package contains the

configurations for physical and logical devices in the tele-

scope (receptors, subarrays), to be parsed and served by

katconfserver[8]. It has been extended to also hold tele-

scope pointing model data so that operators and astronomers

may update them as needed using GitHub’s Pull Request

model7. Production changes are kept in a separate branch

(karoo), that is pulled periodically on to site by a sched-

uled job. The karoo branch was needed in order to prevent

changes during development propagating directly into the

production environment without going through the verifi-

cation process. Unfortunately there is no automated job in

place to integrate these changes back into master, so it is

currently a manual step that must happen during release

time.

6 A rigorous treatment of the problems with imperative actions in configu-

ration management can be found in [7].
7 The process is followed by development teams for code changes and

works extremely well for change review and auditability.

SOLUTION APPROACH

To avoid the trap of endless local optimisations, we fo-

cused on improving the entire process end-to-end. First, we

sought to develop some conceptual models derived from first

principles. Also, as software evolves, the implementation

details will differ based on context but the principles that

govern them should not vary[5]. These conceptual models

could then be appropriately reified based on judgement of

the developer at the time of implementation.

Change Management

The activity of software development is fundamentally

concerned with introducing change to some system by mod-

ifying some of its constituent parts. We don’t know if the

system’s behaviour can be fully deterministic, but we can

say its initial state S0 is determined by some instance of

its configuration C. We adopt Couch & Sun’s definition

of configuration as the “invariant part of a system that is

not modified during normal operation or by normal users

who are not also administrators”[9]. Illustrated in general

functional notation:

S0 = C

In more concrete terms, a system’s configuration could be

composed of operating system, directory structure, system

libraries, language packages, services and so on.

C = f (python packages,OS packages, · · · )

When defined as such, it becomes apparent that a sig-

nificant task of release engineering[10] is the selection of

appropriate configuration to constrain the system’s initial

state (and subsequently its behaviour) to desired bounds.

What counts as “appropriate” must meet some qualification

criteria through testing or more formal methods.

Releases can be characterised as the the process of replac-

ing a set of configurations with another. The set of changes

(∆C) can be expressed as the composition of normal soft-

ware development operations of building from source (b),

packaging (p) and deployment (d). Thus a chain of deter-

minism can be established back to the original source code

that produces the change.

b = build(sourcecode, · · · )

∆C = d ◦ p ◦ b

Path to Production

By treating the set of changes as a first class citizen, we

can conceive an appropriate composition of operations for

it to be succesfully included in the changeset. In practice

this is known as the path to production for a change. It is

often modelled as a sequence of stages that the change is

promoted through until it reaches production.

The path to production directly corresponds to the con-

struct of a deployment pipeline[11, 5]: the multi-stage, au-

tomated workflow that forms the foundation of Continuous

Delivery and DevOps practices.

Non-repeatable Deployments
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Figure 1: Python packages dependency tree for CAM generated by pipdeptree.

There are implicit dependency relationships between soft-

ware packages in the CAM system, as illustrated by the

dependency tree8 in Fig. 1. In order to map the path to

production for code contributions to CAM we needed to

understand the full structure of CAM’s dependencies. By

understanding the dependency tree, we can design the con-

tinuous integration and deployment pipelines in a way that

allows every change to propagate and be verified incremen-

tally. That is, when a package is successfully built (i.e. its

unit tests pass), other packages downstream to it should im-

mediately also build, using the former’s latest built version.

In this way, we can achieve provenance while also discover-

ing integration failures early.

Release Candidate

A fundamental idea in Continuous Delivery is that ev-

ery set of changes that is succesfully integrated should be

potentially releasable. In other words, it has passed some

measure of quality that might make it fit for deployment

and ultimately used in the production environment. Humble

& Farley go as far as to state that “every change[. . . ] is a

release candidate”[5] and it is the starting assumption that

the continuous integration system must set out to disprove9.

For a complex, distributed system such as CAM, a release

candidate is not so easily defined: the notion of a single

artifact that encapsulates the changes to the configuration of

a system did not exist. The configuration of CAM converges

upon deployment to an environment and the procedure was

not determinstic.

Figure 2: Release Candidate server image concept.

8 this graph was constructed by a tool called pipdeptree[12] which in-

spects the requirements specified in each package’s setup.py. Third-

party packages were deliberately omitted.
9 Any change that does not meet the quality criteria must have its path to

production curtailed. Deployment pipelines are a natural fit for this.

However by leveraging one of CAM’s original design prin-

ciples to favour homogenous nodes[8], we can encapsulate

the release candidate concept in a server image (Proxmox

LXC template). So every build would result in a server im-

age that could be deployed to an environment corresponding

to a deterministic snapshot of the entire system’s baseline, or

starting state (Fig. 2). This is an approach employed by Net-

flix[13] in their build and deployment system for a famously

complex and robust production environment, comprising of

thousands of nodes. A key benefit of this is that it allows

the clear separation of build and run stages, so that we can

gain traceability and provenance of changes. Multiple can-

didates can be deployed and verified simultaneously and by

baking the packages into the server image, we can introduce

some determinism into the build and deploy process with-

out needing to deepdive into the set of opaque deployment

scripts.

THE CAM DEPLOYMENT PIPELINE

Based on the package dependency tree (Fig. 1), we de-

signed a deployment pipeline(Fig. 3) that is triggered when

the six leaf nodes(katcomp, katobs, katportal, katproxy, kat-

sim, katuilib) are successfully built. To avoid unnecessary

implementation effort, only these six packages are selected.

Their builds are also sufficient to demonstrate that they inte-

grate with packages above them in the dependency tree.

The ci.pin-dependencies job is responsible for pro-

ducing a canonical, list of requirements with their version

pinned. pip-compile[14] is used to resolve version con-

flicts between dependencies. The requirements are provided

as input to the ci.build-candidate job, which effectively

provisions a full node and then bakes it into an LXC template

image (autobuild-*.tar.gz). This image is uniquely

named and corresponds with single build that was trigg-

gered by changes. The server image is then deployed into

two environments by the ci.aqf-pipeline meta-job so

that they can be verified for quality and correctness.

The final outcome is that we have encapsulated the con-

cept of a release candidate into a single artifact with a

very clear, deterministic relationship to the resulting sys-

tem. This greatly simplifies the build, verification and

deployment process for a distributed system. The cho-

sen branching strategy becomes irrelevant, and the jobs

themselves are composable, i.e. ci.build-candidate
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Figure 3: CAM Deployment Pipeline in Jenkins

needs no knowledge about the system except how to

convert any given pinned-requirements.txt into an

autobuild-*.tar.gz.

FURTHER WORK

There is still a lot more scope for improving the deliv-

ery of CAM and the subsystems that support it. We see

opportunities to make AQF tests more reliable and execute

faster. That is, lower the rate of false negative test results

and refactor tests into smarter slices of scenarios.

Dependency-driven CI

Creating a comprehensive build process that fully resem-

bles the CAM package dependency tree is another area to be

pursued so that all changes trigger the correct builds at the

right levels. Any and all changes should fan-in to producing

a complete system that can be verified. This implies daisy-

chaining each component’s build process in the appropriate

order.

Intra-Release Path to Production

An automated path to production is still required For

changes that need to be applied to the system for which a full

redployment of all the nodes is not feasible – such as critical

fixes and security patches. CAM unfortunately does not

implement a loosely coupled, services-oriented architecture

such that each component can be independently packaged

in a container10. In lieu of this, strategies could include

leveraging OS and language package managers11 to deliver

changes to running nodes.

Network-independent Image Creation

Lastly, the image baking process can be sped up by refac-

toring out the need to boot and provision a node. An ap-

proach chosen because the deployment scripts are numerous

and untested, so they difficult to verify and therefore difficult

10Sometimes broadly referred to as a microservices architecture.
11apt for Ubuntu and pip for Python.

to change. Introducing infrastructure testing would allow

verification of the resulting server image configuration and

therefore modify the operations that create it.

ACKNOWLEDGEMENTS

The author would like to thank The South African Radio

Astronomy Observatory and the National Research Foun-

dation for supporting this work. Much gratitude is also

extended to the exceptional colleagues in the Software Team

who together are responsible for the world-class development

and upkeep of Control and Monitoring aspects of MeerKAT.

Your support and contributions are immeasurable.

REFERENCES

[1] N. Marais, “MeerKAT Control and Monitoring System Ar-

chitecture”, in Proceedings, 15th International Conference

on Accelerator and Large Experimental Physics Control

Systems (ICALEPCS 2015), Melbourne, Australia, October
2015, Paper MOPGF067. doi: 10.18429/JACoW-

ICALEPCS2015-MOPGF067.

[2] L. Brederode and L. Van den Heever, “MeerKAT Project

Status Report”, in Proceedings, 16th International Confer-

ence on Accelerator and Large Experimental Physics Con-

trol Systems (ICALEPCS 2017), Barcelona, Spain, October
8-13, 2017, Paper THPHA066. doi: 10.18429/JACoW-

ICALEPCS2017-THPHA066.

[3] N. Marais and P. S. Swart, “Virtualization and Deployment

Management for the KAT-7 / MeerKAT Control and Moni-

toring System”, in Proceedings of ICALEPCS2013, San
Francisco, CA, USA, 2013, THCOBA06.

[4] B. Xaia, T. Gatsi, and O. Mokone, “Automated Software Test-

ing for Control and Monitoring a Radio Telescope”, in Pro-

ceedings, 16th International Conference on Accelerator and

Large Experimental Physics Control Systems (ICALEPCS

2017), Barcelona, Spain, October 8-13, 2017, Paper TH-

PHA164. doi: 10 . 18429 / JACoW - ICALEPCS2017 -

THPHA164.

[5] J. Humble and D. Farley, Continuous Delivery: Reliable Soft-

ware Releases through Build, Test, and Deployment Automa-

tion (Adobe Reader). Pearson Education, 2010.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH2003

WESH2003
1514

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



[6] K. Morris, Infrastructure as code: managing servers in the

cloud. " O’Reilly Media, Inc.", 2016.

[7] A. Couch and Y. Sun, “On the algebraic structure of conver-

gence”, in International Workshop on Distributed Systems:

Operations and Management, Springer, 2003, pp. 28–40.

[8] L. van den Heever, S. SA, et al., “Meerkat control and

monitoring-design concepts and status”, Proceedings of

[9] A. Couch and Y. Sun, “On observed reproducibility in net-

work configuration management”, Science of Computer Pro-

gramming, vol. 53, no. 2, pp. 215–253, 2004.

[10] R. Penners and A. Dyck, “Release engineering vs. devops-an

approach to define both terms”, Full-scale Software Engi-

neering, pp. 49–54, 2015.

[11] J. Humble, C. Read, and D. North, “The deployment pro-

duction line”, in AGILE 2006 (AGILE’06), IEEE, 2006, 6–

pp.

[12] V. Naik, Naiquevin/pipdeptree, original-date: 2014-02-

02T17:45:23Z, Sep. 24, 2019. https://github.com/

naiquevin/pipdeptree

[13] N. T. Blog, How We Build Code at Netflix, Mar. 2016, https:

//medium.com/netflix-techblog/how-we-build-

code-at-netflix-c5d9bd727f15

[14] Jazzband/pip-tools, original-date: 2012-09-10T08:50:26Z,

Sep. 28, 2019, https://github.com/jazzband/pip-

tools

ICALEPCS2013 San Francisco, CA, USA, 2013, .

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WESH2003

Software Technology Evolution
WESH2003

1515

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


