
CAFlux: A NEW EPICS CHANNEL ARCHIVER SYSTEM∗

Kanglin Xu†, Los Alamos National Laboratory, Los Alamos, USA

Abstract
We introduce a new EPICS channel archiver system that

has been developed at LANSCE of Los Alamos National
Laboratory. Different from the legacy archiver system, this
system is built on InfluxDB database. InfluxDB is an open
source time series database system that provides a SQL-
Like language for fast storage and retrieval of time series
data. By replacing the old archiving engine and index file
with InfluxDB, we have a more robust, compact and stable
archiving server. On a client side, we introduce a new im-
plementation combined with asynchronous programming
and multithreaded programming. We also describe a web
based archiver configuration system that is associated with
our current IRMIS system. To visualize the data stored, we
use Javascript Plotly graphing library, another open source
toolkit for time series data, to build front-end pages. In ad-
dition, we also developed a viewer application with more
functionality including basic data statistics and simple arith-
metic for channel values.

CAFlux ARCHITECTURE AND
SUBSYSTEMS

CAFlux EPICS channel archiver system is developed to
replace the legacy archiver system as it is no longer an active
project. CAFlux system consists of several components as
shown in Fig. 1.

• A Data Collection Engine is developed with Python
asynchronous programming and multithreaded pro-
gramming based on PyEPICS [1] and EPICS channel
access.

• InfluxDB Server is used as a data storage engine. In-
fluxDB [2] is a database system optimized for storage
and retrieval of time series data. It supports a few hun-
dred data nodes initially and is able to scale to a few
thousand nodes. Its single-node edition is free but the
clustering system is sold as commercial product.

• HTTP Web Server as a logic tier provides a web service
for archiver configuration, data visualization and data
stream.

• MySQL Server as another data tier holds all the user
configuration information.

IMPLEMENTATION OF CAFlux DATA
COLLECTION ENGINE

The Data Collection Engine is the core CAFlux subsystem
that collects the data through EPICS channel access, caches

∗ Supported by the US Department of Energy, Los Alamos National Labo-
ratory. Managed by Triad National Security, LLC for the DOE National
Security Administration (Contract 89233218CNA000001).

† kxu@lanl.gov

it in the memory and saves it to the InfluxDB server. In this
section, we describe the engine in details.

Multitier Architecture
The Data Collection Engine is designed as a multitier

architecture, i.e. a lower level engine, a upper level manager
and at the highest level, a monitor.

• Lower level engine for core jobs: reading configura-
tions, collecting and caching data, and saving data.

• Lower level engine designed as a daemon and devel-
oped with the Python asyncio and threads module.

• Upper level manager for monitoring the low level en-
gine: checking the PID file, restarting the lower level
daemon process if it is dead or in zombie status, log-
ging error messages and sending emails if any issue
occurs.

• The upper level manager designed and implemented as
simple as possible in order to make it more robust and
stable enough to run 24 hours a day and 7 days a week
with low probability for any issues.

• The highest monitor is a simple script scheduled by
LINUX Cron Daemon to run every 10 minutes to check
the status of the running processes. When a process is
dead, it will restart it and send an email notice.

Threads and Asynchronous Task Loop
When we designed the data collection engine, an obvious

approach is to use a timer thread for each record to collect
data, to save data, and then to sleep for a preset time and wait
for the next cycle. The drawback of this approach was that
large a number of threads that do work for a short time but
sleep most of the time. In addition, the number of threads
is limited by resources when the record volume becomes
large. Another approach is to start a thread to do work and
then to let it die after the work is finished. This approach is
complicated because we need a mechanism to start a thread
at a preset rate and synchronize a large number of threads to
make sure only one thread can access the shared resources.
We also consider an asynchronous approach that does all
the work in the main thread. But we find that one thread is
not enough to meet the performance requirement for high
volume records.

In this system, we developed an engine through a com-
bination of Python asynchronous programming and mul-
tithreaded programming. In this way, we can circumvent
complex implementation for synchronizing a large number
of threads and still have enough working threads to han-
dle a large amount of records with high writing frequency.
Specifically, the main thread is

• to read inputs, initialize global data containers and start
up

• to initialize CA library and create CA context

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA164

WEPHA164
1470

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Analytics



Figure 1: A diagram of CAFlux and its subsystems.

• to split new work threads
• to include an asynchronous task to check and log the

health status of each work thread every few minutes
and sleep the rest of the time.

On the other hand, each work thread with an asynchronous
task loop in it handles hundreds of records in a “parallel”
manner. Its work includes

• to get a record value from its cache and write it to the
storage

• to set a lower priority for a channel if its status is found
to be disconnected

• to repeat the above steps at a predefined rate.
Note that the number of working threads can be configured
by users.

Channel Monitors by PyEPICS CA Module
The data collection engine is built on PyEPICS CA Mod-

ule, a fairly complete wrapping of the basic EPICS CA li-
brary for Python, to save our efforts and time to write our
channel monitor module. The monitor module emulates the
EPICS camonitor application by implementing the follow
steps.

1. Creating a channel for every record
2. Subscribing a connection callback function to CA and

called by CA whenever a channel connection status
changes

3. Subscribing a channel callback function to CA to mon-
itor channel values and called by CA whenever channel
value changes

4. The engine cache updated by the channel callback func-
tion to hold the current value

Data Structure for the Engine Cache
Since the engine cache is synchronized for both reading

and writing access, it creats a bottleneck which impacts
system performance. In order to allow more threads to access
the cache at the same, we design a 2-level data structure for
it as shown on Fig. 2.

Figure 2: Engine cache structure.

The PV INDEX is a Python dictionary mapping a channel
name, e.g. A, to an integer. This integer is an index of PV
CACHE LIST and used to search another Python dictionary
contained in the PV CACHE LIST and having the channel
A’s current value. The PV INDEX is initialized at startup
and read-only during the program running. Therefore, there
is no need for synchronization for it. The PV CACHE LIST
is updated all the time, and thus do need to be synchronized.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA164

Data Analytics
WEPHA164

1471

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 3: CAFlux viewer.

Figure 4: CAFlux configuration and managemen.t Figure 5: Online data retrieval and data stream.

But only the same dictionary needs to be synchronized rather
than the entire cache. If two channels are located at different
dictionaries, they can be touched parallelly. CAFlux archiver
system allows users to tune the number of dictionaries in the
PV CACHE LIST to meet their different requirements.

DATA RETRIEVAL AND VIEWER
Data saved in the Data Storage Engine, actually an In-

fluxDB database system, can be retrieved by SQL-like query
language shipped with InfluxDB. Many popular program-
ming languages have interfaces to connect, query, insert and
manipulate data in InfluxDB systems. For example, Python
has a module called InfluxDBClient for users to read and
write data easily.

To display and plot data retrieved, an application called
CAFlux Viewer, as shown in Fig.3, has been developed using
Python matplotlib module. In addition to data waveform vi-
sualization, the application also provides basic data statistics
and simple arithmetic for record values.

CAFlux CONFIGURATION
The CAFlux configuration and management system is a

3-tier web application that allows users to insert, update
and delete records they want to archive. Other management
features like Enable or Disable records, and archiving rate

update are also available. The front-end uses JQuery AJAX
and JQuery UI for a dynamic interface and web forms. The
back-end implements GET and POST methods to handle
requests and send data. The database is hosted on MySQL
server. One example page of the web system for users to
update record configuration is shown in Fig.4.

The online data retrieval and stream is also a web appli-
cation as shown in Fig.5. Its front-end is developed with
Javascript Graphing Library and JQuery AJAX while the
back-end is built with Python Django to query data from
InfluxDB data storage and response to requests.

CONCLUSION
Built on InfluxDB system, CAFlux has a safer, more

compact and faster storage and is currently running con-
tinuously at Los Alamos Neutron Science Center of Los
Alamos National Laboratory. A balance is achieved be-
tween archiver scalability and complexity with Python mul-
tithreaded and asynchronous programming.

REFERENCES
[1] PyEPICS, http://https://cars9.uchicago.edu/
software/python/pyepics3/ca.html

[2] InfluxDB, https://www.influxdata.com/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA164

WEPHA164
1472

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Analytics


