
A VERY LIGHTWEIGHT PROCESS VARIABLE SERVER*

A. Sukhanov†, J. P. Jamilkowski, Brookhaven National Laboratory, Upton, USA

Abstract
The liteServer is very lightweight, low latency, cross-

platform network protocol for signal monitoring and
control. It provides very basic functionality of popular
channel access protocols like CA or pvAccess of EPICS.
It supports request-reply patterns: 'info', 'get' and
'set' requests and publish-subscribe pattern: 'monitor'
request. The main scope of the liteServer is: 1) control
and monitoring of instruments supplied with proprietary
software, 2) seamless connectivity to existing control
systems, 3) restricted access to process variables
(PVs), 4) possibility to implement the server in FPGA
without CPU core. The transport protocol is connection-
less (UDP) and data serialization format is
Universal Binary JSON (UBJSON). The UBJSON
provides complete compatibility with the JSON
specification, it is very efficient and fast.

INTRODUCTION
Modern instruments are often supplied with rich

proprietary software tools, which make it difficult to
integrate them to existing control systems. The initial
motivation of developing the liteServer was to build a
simple server, which controls a device using supplied
proprietary software tools (DLLs or shared libraries) and
expose the process variables for access from an existing
control architecture. The basic features of the
communication protocol are suitable for implementation in
FPGA fabric which lacks a CPU core, such firmware could
be made fault tolerant using TMR [1] technique.

UBJSON
The UBJSON serialization format have been chosen for

communication because it provides complete compatibility
with the omnipresent JSON – there is a 1:1 mapping
between standard JSON specification and UBJSON [2]. In
addition, it has following advantages:

• Ease of implementation. It is feasible to implement it
in FPGA fabric.

• Ease of use.
• Speed and efficiency – UBJSON uses data representa-

tions that are (roughly) 30% smaller than their com-
pacted JSON counterparts and are optimized for fast
parsing. Streamed serialization is supported, meaning
that the transfer of UBJSON over a network connec-
tion can start sending data before the final size of the
data is known.

The Universal Binary JSON specification utilizes a
single construct with two optional segments (length and
data) for all types:

[type, 1-byte char]([integer length])([data])

Similarly to JSON, UBJSON defines two container
types: array (analog of a Python list) and object (analog
of a Python dictionary).

MESSAGING
The message, received by the server is an UBJSON

object with obligatory keys 'cmd', 'username' and
'program'. The 'cmd' is 2-element UBJSON array, the
first element is a liteServer command, the second is an
array of arguments. The liteServer command may be one
of the following: 'info', 'get', 'set', 'monitor' and
'retransmit'. The 'retransmit' command is special. It is
used to recover data lost during the transaction. The array
of arguments comprises up to four other arrays: device
names, parameter names, parameter properties and values.
All elements of an array can be requested by specifying an
empty array. Example of the command to change
frequencies of two devices:

{{'cmd': ['set', [['dev1', 'dev2'],
['frequency'], ['value'], [1.0, 2.0]]],
'username': 'JohnDoe', 'program':
'liteAccess.py'}

The response message is an object with keys
representing device:PV and values representing the
requested properties as shown below:

{'dev1:frequency': {'value': [1.0]},
'dev2:frequency': {'value': [2.0]}}

The 'username' and 'program' keys are used for
optional access restriction.

THE SERVER
The server listens for request and sends responds through

an UDP sockets. Messages, which are too big to fit into a
single UDP transfer are chopped into smaller chunks. The
position of the chunk is transferred as a first word of the
socket message. The client acknowledges the server when
the whole message has been received. If a chunk has been
lost in the transfer, then the client issues a 'retransmit'
request.

In the Python implementation, the liteServer module
provides base classes Device and PV for devices and its
Process Variables objects to be handled by the server. The

* Work supported by Brookhaven Science Associates, LLC under
Contract No. DE-SC0012704 with the U.S. Department of Energy.
† sukhanov@bnl.gov

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA151

Control System Infrastructure
WEPHA151

1449

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

PV constructor accepts the following basic keyword
arguments:

features = 'RWA' # feature,
 # Readable, Writable, Archivable
desc = '' # description
opLimits = None # operational limits
value = [] # value, should be iterable

The type of the value is derived from the type of the pro-
vided argument, the size of the value is dynamic. More
specific properties could be added using an add_prop()
member function. An example below shows a fully-func-
tional server which hosts five devices. Each device consist
of ten individually-incremented counters and a modifiable
color image.

import time,threading
import numpy as np
from liteServer import Device, PV, EventExit

class Scaler(Device):
 def __init__(self,name):
 h,w,p = 1200,1600,3
 img = np.zeros(h*w*p).astype('uint8')\
 .reshape(h,w,p)
 pvs = {
 'counters': PV('R','10 counters',10*[0.])
 'increments': PV('RW','Increments',range(10))
 'frequency': PV('RW','Update frequency',
 ,opLimits=(0,10)),
 'pause': PV('RW','Pause all',[False]),
 'image': PV('R','Image',[img])
 }
 threading.Thread(target=self._state_machine)\
 .start()

 def _state_machine(self):
 self._cycle = 0
 while not EventExit.is_set():
 EventExit.wait(1./self.frequency.value[0])
 if self.pause.value[0]:
 continue
 # increment counters individually
 increments = self.increments
 for i,inc in enumerate(increments.value):
 self.counters.value[i] += incr
 self.counters.timestamp = [time.time()]
 # increment all pixels in the image
 self.image.value[0] = (self.image.value[0]\
 + 1).astype('uint8')

Instantiate five devices
devices = [Scaler('dev'+str(i+1)) for i in range(5)]

Instantiate server and enter an event loop
server = liteServer.Server(devices)
server.loop()

THE CLIENT
A Python module liteAccess provides access to process

variables, hosted by a liteServer. It defines a PV class for
accessing multiple process variables from the server. For
example, an access object for two process variables ‘par1’
and ‘par2’ from two devices ‘dev1’ and ‘dev2’ would be:

manyPVs = PV(('host;port',
('dev1','dev2'),('par1','par2')))

where the host and port are the host name and port number
of the server.

The access object for all parameters of ‘dev1’ would be:

 aPVs = PV(('host;port',('dev1')))

The value of a process variable is Python decorator, the
following statement:

list_of_values = manyPVs.value

executes a ‘get’ transaction with the server and decodes
response to a list of values. Similarly, the statement:

manyPVs.value = list_of_values

encodes a list of values to UBJSON format and executes a
‘set’ transaction with the server.

A PV.info() method retrieves information of requested
process variables. Example of PV.info() and getting value
of a process variable:

from liteAccess import PV
aPV = PV(('localhost;9700',('dev1'),('frequency')))
print(aPV.info())
{'dev1:frequency': {'value': '?',
 'count': [1],
 'features': 'RW',
 'desc': 'Update frequency',
 'opLimits': [0, 10]}}
print(aPV.value)
{'dev1:frequency': {'value': [1.0]}}

BRIDGE

A bridge program is used to integrate any liteServer-
based device into existing control system. In RHIC Control
Architecture the bridge is a simple ADO (Accelerator De-
vice Object) manager, which automatically creates ADO
parameters and translates ADO requests get(), set() and
getAsync() into corresponding liteServer requests: get(),
set() and monitor().

GUI CLIENT
A spreadsheet-based GUI client is provided to allow for

simple control and monitoring of process variables. It au-
tomatically represents the PVs as corresponding GUI ele-
ments like TextEdits, SpinBoxes, and CheckBoxes.

CONCLUSION
Several devices at RHIC are served by the Python-based

liteServers, hosted on Windows and Raspberry Pi plat-
forms:
• Magnetometers
• Laser interferometers
• Infrared cameras.
Servers are connected to the RHIC Control Architecture

using a bridge ADO manager program. Transfer of several-
megabyte data samples at 50 MB/s has been demonstrated.
The typical time of a short get/set transaction is ~2 milli-
seconds.

Size of the liteServer and liteAccess modules is ~350
lines of code each, size of the bridge program for RHIC
Controls: 200 lines.

Planned Improvement
• Implement liteServer in FPGA.
• Improve support for the 'monitor' request.
• Add optional TCP protocol (for large transfers).
• Improve multi-client performance.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA151

WEPHA151
1450

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System Infrastructure

• Provide a plotting application (the image processing is
already supported by an imageViewer).

• Develop a bridge for EPICS system.

REFERENCES
[1] TMR, https://en.wikipedia.org/wiki/Triple_

modular_redundancy

[2] Universal Binary JSON, http://ubjson.org/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA151

Control System Infrastructure
WEPHA151

1451

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

