
SCALING UP THE DEPLOYMENT AND OPERATION OF AN ELK
TECHNOLOGY STACK

S. Boychenko, P. Martel, B. Schofield CERN, Geneva, Switzerland

Abstract
Since its integration into the CERN industrial controls

environment, the SCADA Statistics project has become a
valuable asset for controls engineers and hardware experts
in their daily monitoring and maintenance tasks. The adop-
tion of the tool outside of the Industrial Controls and Safety
Systems group scope is currently being evaluated by ALICE,
since they have similar requirements for alarms and value
changes monitoring in their experiment. The increasing in-
terest in scaling up the SCADA Statistics project with new
customers has motivated the review of the infrastructure
deployment, configuration management and service mainte-
nance policies. In this paper we present the modifications
we have integrated in order to improve its configuration flex-
ibility, maintainability and reliability. With this improved
solution we believe we can propose our solution to a wider
scope of customers.

INTRODUCTION
The scale and increasing complexity of modern SCADA

applications deployed in a wide range of domains in CERN’s
accelerator complex urged the development of a range of
support frameworks for the back-end infrastructure’s oper-
ation and maintenance. Until recently, data from different
sources was stored and processed independently; this made
data analysis a tedious task, requiring the manual matching
of information from multiple domains. In order to combine
data from multiples sources, make it more accessible and
provide seamless access to the underlying measurements,
the SCADA Statistics service was developed [1].

There are around 200 controls applications maintained by
the Industrial Controls and Safety systems group and most
of those archive data from thousands of devices into a persis-
tent storage. The equipment experts working with historical
data are generally interested in analysing the alarms and
value changes (for example to determine if there are miscon-
figured devices). Despite the fact that the database allows
extraction of the required data, due to its internal structure
and huge amount of persisted measurements, the task is te-
dious and time-consuming. The SCADA Statistics project
was developed to solve this problem, enabling fast and easy
access to alarms and value changes data. In addition to the
historic data analysis, the system collects and processes the
data from controls applications logs, distributed across many
servers, preserving the information which was previously
discarded after some time (log files on the servers are rolling,
i.e. overwritten when determined threshold is reached).

The SCADA Statistics service (see Figure 1) uses the
Elastic stack, an open source search and analytics engine.
The Elastic stack is composed of Filebeat (a lightweight way

to follow and centralize logs and files), Logstash (a data
processing pipeline), Elasticsearch (the search and analytics
engine) and Kibana (a visualization tool for Elasticsearch
data). The system can be split into three separate layers:
data source, backend and frontent. The data source layer is
composed by a large number of servers running the controls
applications and a centralized storage where historical data is
being persisted. These services are hosted on the dedicated
hardware cluster, which is operated by the department’s
system administrators. The frontend layer functionality is
assured by the IT department, and most of the maintenance
tasks are performed by CERN’s Elastisearch experts. The
backend layer is running on the virtual machines (provided
through Openstack technology), having a limited support,
generally constrained to network and basic Operating System
issues.

After three years in production, the SCADA Statistics
service has generated over 1 TByte of data with more than
3.7𝑥109 indexed measurements. The input rate increases on
a continuous basis as new applications and use cases are
integrated into the service. In addition to the wide user base
within the same working group [2], external clients (from
ALICE [3] and potentially other domains at CERN) become
interested in running the service on their own infrastructure.

Even though the existing solution fulfils the initial require-
ments, the "community" (i.e. "free") version of Elastic stack
(which SCADA Statistics is based on) lacks some function-
ality like monitoring and failure recovery. These features
are required if we are to extend the scope of the project for
external users. Additionally, in its initial implementation,
the system configuration and deployment was based on man-
ually edited, long shell scripts which made the maintenance
and integration of new features very difficult.

In this paper, we describe the consolidation project that
made the SCADA Statistics service more flexible, maintain-
able and configurable.

SCADA STATISTICS
INFRASTRUCTUREMONITORING

The initial experience with the maintenance of the
SCADA Statistics stack proved that the system requires a
constant monitoring, as unexpected failures were observed in
most of the system components. The deployment of the con-
ventional Metricbeat-based solution was not an option, since
the "community" version of Elasticsearch, which was used
to make the monitoring information persistent, did not allow
the definition and configuration of alarms. Furthermore,
this solution does not support an automated failure recov-
ery mechanism, requiring the person in charge to perform

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA139

Software Technology Evolution
WEPHA139

1431

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



[Not supported by viewer]

[Not supported by viewer]

WinCC OA Archive DB
Kibana

ElasticsearchLogstash Statistics

Logstash Shippers Logstash Indexers

Database Values

Log Entires

WinCC OA Servers Redis Queue

Data Sources SCADA Statistics Backend Infrastructure Frontend Infrastructure

Data Processing Pipeline

Figure 1: The initial infrastructure.

a manual intervention, even in the most simple cases (i.e.
when some service has crashed and needs to be restarted).

The observed problems allowed us to define the require-
ments for the future monitoring system. First of all, it had to
be pro-active, meaning that the number of manual interven-
tions should be minimal. Secondly, the framework should
notify the system administrators when an anomaly occurred,
both when it was related to the system resources (e.g. high
CPU or memory usage observed during a continuous time
period) and to service behaviour (e.g. is the service was
running and could be reached by other components in the
data processing pipeline). Finally, the monitoring system
had to be flexible, since the network where the solution was
to be deployed is heterogeneous, with some of the cluster
nodes having restricted access.

Based on the desired features, a few systems were studied
as potential candidates for integration into the SCADA Statis-
tics project infrastructure, namely COSMOS [4], Nagios [5]
and Monit [6]. We started by evaluating the integration with
COSMOS system, which looked very promising. Since it is
being developed at CERN, we could count on strong support
from our colleagues both during its setup and maintenance.
On the other hand, at the time COSMOS was in an intense
development phase, meaning that its stability could be af-
fected and its API could undergo some changes over time.
That was the main limitation and the reason why we pro-
ceeded with the evaluation of external monitoring systems.
Nagios, despite fulfilling all of the desired features, required
a steep learning curve at the beginning, and would therefore
require significant man-hours investment, even for a simple
setup. Finally, because it is able to supply most of the desired
functionality with a simpler configuration, Monit became
our choice for the monitoring tool, providing a good balance
between supported features and setup complexity.

The configuration of the monitoring system for SCADA
Statistics infrastructure follows the master-less approach;

even though an additional daemon is running on one of
the support machines to check the network status. The
application on the the support machine is configured to
periodically check whether all cluster nodes are reachable
and that there are services listening on the pre-defined
set of ports. The others, individual Monit instances, are
configured in first place to check the status of the determined
services, depending on the type of the machine where the
daemon is running. Whenever an unexpected application
termination is detected, an e-mail notification is sent to the
configured list of recipients and an attempt to restart the
failed component is performed. The previously described
behaviour can be easily achieved by adding the following
"human-readable" Monit instructions into a respective
configuration file:

check process logstash
matching "logstash"
start program = "/bin/systemctl start logstash"
stop program = "/bin/systemctl stop logstash"
if does not exist then alert

Additionally, a simple configuration, similar to the one pre-
sented above, was added to track the system resources’ usage
and configuration file changes. A slightly more complex cus-
tomization was required to setup arbitrary system metrics
monitoring, like queue size. In this case, program status
check (a Monit feature), was used to define a specific logic
to assess those metrics.

CONFIGURATION MANAGEMENT
PROCESS CONSOLIDATION

The configuration management consolidation addresses a
different range of project issues. The revision of the current
process was triggered by the need to upgrade the backend
infrastructure to the latest Elastic-stack version, as its current

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA139

WEPHA139
1432

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



one (at the time), was approaching the end of lifetime (no
more bugfixes nor updates). The upgrade policy of Elas-
ticsearch states that between 2 major releases the backward
compatibility is not guaranteed; in our case we have detected
backwards compatibility issues requiring major configura-
tion changes. In order to execute the upgrade operation
successfully, we needed a development environment where
the new implementations and configurations could be ex-
tensively tested and validated in order to be applied to the
production environment. After preliminary analysis of the
existing configuration management and deployment proce-
dures, we realised that the task would require a considerable
effort to be accomplished, as the shell-based solution would
need a complete review and redesign.

Shell script-based cluster management process may
worked well in a small scale, homogeneous infrastructure; at
the same time, once the system evolves and requires a more
sophisticated setup, dedicated configuration management
tools tend to be more efficient. The declarative approach
of the configuration management tools (the developer does
not need to define how to perform a determined operation)
allows the framework to abstract from the implementation
details and provide the conditions where the developer does
not need to think about such details like the operating system
where the deployment will be performed. Additionally, most
of the configuration management frameworks are idempo-
tent, meaning that in case of some operation is executed
multiple times on a determined machine, its state will only
be changed once, during the first execution (unless explicitly
instructed otherwise). This functionality is a huge advantage
in comparison to the shell scripts, where implementing such
logic is time-costly and error-prone.

Amongst many available configuration management sys-
tems, Puppet [7] and Ansible [8] were evaluated, due to
their wide adoption in the industry (as well as at CERN)
and considerable high number of desired features in their
"community" versions. The initial comparison between the
two, revealed that Puppet would have required more effort
to be adopted due to the required learning of the complex
Domain Specific Language and Command-Line Interface
used for configuring the framework. Other then that, Puppet
requires client components to be installed on every cluster
node, which rely on the master to function (which is a sin-
gle point of failure), while Ansible is based on a serverless
architecture and does not require any agent installation on
target nodes to execute the configured tasks (other than SSH
server and Python), further reducing the complexity of the
infrastructure setup. Additionally, it also provides a possi-
bility to execute ad-hoc commands on the configurable set
of nodes, allowing faster prototyping and development.

The results of the evaluation helped us to determine that
due to its simplicity and some of its unique features, Ansible
suited better our SCADA Statistics use case. The SCADA
Statistics project configuration management process was
split into multiple infrastructure-level operations (Ansible
Playbooks) like cluster setup or configuration deployment.
Furthermore, each of those was divided into roles, which are

Setup Cluster
Install Basic RPMs

Install WGET
Install Java
Install RNG Tools

Install Logstash
Setup Elastic Stack Repository
Install Logstash Service

Configure Logstash Indexer
Determine Installed Logstash Plugins
Install Missing Logstash Plugins
Update Logstash Configuration

Setup Logstash Directories
Start Logstash Service

Figure 2: An example Ansible Playbook.

used to define node-level applications, like Logstash setup.
Some definitions are re-used between different Playbooks,
allowing to reduce the amount of code which needs to be
maintained. Finally, each of the roles is split into multiple
tasks, which are responsible for interacting with a single An-
sible module and execute a very targeted action, e.g. install
Java or open a port in the firewall. The execution targets
are defined in an a separate file, which consists of cluster
nodes category sections, with corresponding machines lists.
An example of a slightly simplified "Setup Cluster" Ansible
Playbook, executed for Logstash Indexer host group can be
visualised in the Figure 2. The roles are all of the children
of the "Setup Cluster" component, while the tasks are the
tree nodes assigned to each of the roles1.

RESULTING SCADA STATISTICS
INFRASTRUCTURE

In order to finalize the setup, several additional enhance-
ments were done. First of all, we have migrated the moni-
toring system setup to a separate Ansible playbook, which
would set for us all required parameters and deploy the gen-
erated configuration on the corresponding nodes. All of the
produced configuration management was put into a source
code control repository (GIT), so that we could track the
changes and rollback if needed. Finally, all of the Ansible
Playbooks were incorporated into Jenkins [9] Continous
Integration and Delivery (CI/CD) framework, allowing to
define precisely the execution conditions, environment and
parameters. In Figure 3 we depict the latest version of the
whole infrastructure with the respective monitoring and con-
figuration management implementations.

Some of the Jenkins execution workflows, like configura-
tion generation, are triggered automatically once a change
in the source code is detected, while others require a manual
action from the developer to perform its execution. This is
done as an additional measure to protect the infrastructure
from accidents (in case the cluster installation script is miss-
1 note that childless nodes are actually composed by a single task with a

similar name to the parent

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA139

Software Technology Evolution
WEPHA139

1433

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



configured) and to allow the developers to control the actions
which alter the cluster state (configuration deployment task
for example). Once the workflow is triggered, the devel-
oper is asked (in most cases) to provide some parameters
(like hosts or the version of software which should be in-
stalled) and the rest of the execution is handled by the CI/CD
framework. At any time, the history of the execution can be
checked on the Jenkins Web user interface, allowing to track
breaking changes, in case some have been introduced.

The monitoring and configuration management domain
can be further extended to the data source infrastructure, in
a similar way to that of the Monit configuration which can
be deployed to the nodes which provide the log files. This
way we could monitor the status of the Filebeat service and
in case of a failure on the data collection machines perform
the required maintenance.

OPERATIONAL RESULTS
The evaluation of the implemented solution for configura-

tion management process and monitoring system is mostly
based on the observations collected during the one-year
period since the changes started being deployed into the
production environment. The monitoring setup efficiency
analysis is based upon the comparison between the number
of the detected failures and their impact during different op-
eration periods. Before Monit integration, Logstash service
crashed several times, with failure detection delay ranging
from one day to approximate one month. The most criti-
cal outage occurred on Logstash statistics calculation node,
which stopped performing database queries and missing data
was only detected four days later by the user. The data re-
covery took around 10 hours and was only possible because
the source retains the copy of the required information for a
long period of time. Longer service interruptions had less
impact, since the nodes with failures had their functional-
ity replicated; the problem here was mainly the increased
resource usage and service availability. If since the introduc-
tion of the monitoring system, we still continue to observe
random Logstash service crashes, the failure detection and
recovery now requires only minimal interventions from de-
velopers. The Logstash statistics calculation service has
failed three times during the past year, requiring only one
manual intervention. The outage was caused by an underly-
ing infrastructure update, which triggered an installation of
the incompatible Logstash version, causing failures in com-
munication between different infrastructure components. In
this case the failure recovery process was performed in time
in order prevent the users from experiencing any disruptions.

FUTURE WORK
Based on the findings and observations presented in this

work we were able to identify several potential improvements
which would require an additional investigation. First of all,
the configuration and deployment process could be further
simplified by combining the current solution with a con-
tainer technology (for example Docker [10]). The individual

Data Processing Pipeline
WinCC OA
Archive DB

Monitoring
Node

Source Code
Repository

Configurations

JenkinsAnsible

MonitWinCC OA
Servers

Configuration
Management

Node

Monitoring Domain

Configuration Management Domain

Figure 3: The resulting infrastructure.

infrastructure components, with respective dependencies
and configuration, would be compiled into different Docker
images. The images would be further instantiated through
lightweight containers, serving as an abstraction from the
underlying operating system, producing a consistent and
uniform development environment (both for internal and ex-
ternal users). Amongst other possible additions which could
improve some of the SCADA Statistics project infrastruc-
ture characteristics is the integration of different front-end
solutions. Grafana [11] could bring several benefits, namely
security enhancements. The "community" version of Kibana
(native Elastic stack front-end) does not support any kind of
authentication and authorization mechanisms, while Grafana
provides a possibility for configuring role-based access, mak-
ing it extremely useful to limit the access to the sensitive
data.

CONCLUSION
The observed operational results have confirmed that the

consolidation of the SCADA Statistics project infrastructure
has made the system more maintainable, flexible and most
importantly, reliable. The integration of the monitoring so-
lution allowed us to reduce significantly the time required to
detect failures and provided simple yet reliable self-healing
mechanisms. Since its integration into the production envi-
ronment, the number of manual interventions was minimal,
in comparison to the previous experience. The improve-
ments of the configuration and deployment management
process have proven their efficiency both during the upgrade
of the cluster and the setup of a similar infrastructure for
external users. We could conclude that the chosen tools
(Ansible, Jenkins and Monit) integrate well with the Elastic
stack, and are viable options for use cases similar to the
SCADA Statistics one.

REFERENCES
[1] J. Hamilton et al.,“SCADA Statistics monitoring using the

elastic stack (Elasticsearch, Logstash, Kibana)”, in Proc.
ICALEPCS’17, Barcelona, Spain 2017 .,

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA139

WEPHA139
1434

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



[2] J. C. Tournier, et al., “MONARC: Monitoring the Archiving
Infrastructure of Control Systems", ICALEPCS’19, New York,
USA, 2019, paper WEPHA019, this conference.

[3] K. Admodt et al.,“The ALICE experiment at the CERN LHC”,
Journal of Instrumentation, vol. 3, num. 08 (2008).

[4] F. Locci, et al., “CERN Controls Open Source Monitor-
ing System", ICALEPCS’19, New York, USA, 2019, paper
MOPHA085, this conference.

[5] Nagios - The industry standard in IT infrastructure monitoring,
https://www.nagios.org/

[6] A. Medina-González et al.,“Automated Configuration of
Monitoring Systems in an Immutable Infrastructure”, Proc.
CIMPS’18, Jalisco, Mexico 2018 .

[7] Puppet - Unparalleled infrastructure automation and delivery,
https://puppet.com/

[8] J. Keating, “Mastering Ansible - Design, develop, and solve
real world automation and orchestration needs by unlocking
the automation capabilities of Ansible” (2015).

[9] M. Meyer, “Continuous integration and its tools”, IEEE Soft-
ware Journal, vol. 32, pp. 14-16 (2014).

[10] D. Merkel, “Docker: lightweight linux containers for consis-
tent development and deployment”, Linux Journal, vol. 2014,
num. 239 (2014).

[11] Grafana - The leading open source project for visualizing
metrics, https://grafana.com/

.

,

.

.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA139

Software Technology Evolution
WEPHA139

1435

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


