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Abstract
In the last years, artificial intelligence (AI) has experi-

enced a renaissance in many fields. AI-based concepts are
nature-inspired and can also be used in the field of accel-
erator controls. At DELTA, various studies on this subject
were conducted in the past. Among other possible applica-
tions, the use of neural networks for automated correction
of the electron beam position (orbit control) is of interest.
Machine learning (ML) simulations with a DELTA storage
ring model were already successful. Recently, conventional
Feed-Forward Neural Networks (FFNN) were trained on
measured orbits to apply local and global beam position
corrections to the 1.5–GeV storage ring DELTA. First exper-
imental results are presented and compared with other orbit
control methods.

INTRODUCTION
DELTA is a 1.5–GeV electron storage ring facility oper-

ated by the TU Dortmund University supplying radiation
ranging from THz to the hard x-ray regime [1,2]. The trans-
verse position of the electron beam is measured at 54 capac-
itive multiplexed pick-up monitors (BPMs) installed along
the 115 m long vacuum chamber of the storage ring [3]. For
beam position correction, 30 horizontal (HC) and 26 vertical
dipole correctors (VC) are available. A slow orbit feedback
system (SOFB), ranging from 0.2 Hz to 1 Hz and based on
a singular value decomposition (SVD) algorithm of mea-
sured orbit response matrices (ORM) is in operation since
2005 [4].

Because of increasing software issues and for control sys-
tem maintenance reasons, a revised software version was
required. Therefore, a cone-programming-based global cor-
rection approach has been developed and is in a testing phase
now [5, 6]. An alternative concept applies machine learning
techniques as an heuristic method, inspired by the pioneering
work done at NSLS/BNL [7,8].

ORBIT CORRECTION AT DELTA
All steerer magnets are additional coils on quadrupole

yokes which can be ramped to a current of max. ± 10 A
according to beam kicks of max. ±3 mrad at 1.5 GeV. They
are controlled via 12-bit digital-to-analog converters (DACs)
integrated on CAN to serial bus converter modules [9]. The
DACs allow current changes with a granularity of 2.4 mA
which corresponds also to the minimum read-back resolu-
tion [10].
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The analog BPM signals are read out via a mix of I-Tech
Libera [11] and Bergoz MX [12] electronics. The MX-
BPMs provide the measured beam position as an analog
voltage that is digitized by 12-bit analog-to-digital convert-
ers (ADCs) [13] and fed over a CAN-bus into the EPICS
control system [14]. A 10 Hz low-pass filter reduces sam-
pling noise while maintaining sufficient bandwidth for the
SOFB. The measuring accuracy is approx. ±5 µm mainly
limited by the resolution of the ADCs. At beam currents
above 2 mA the ’slow acquisition’ data from Libera BPMs is
of roughly the same quality as the data from the MX-BPMs.
For a more detailed description see [3, 15].

The ‘zero orbit’, i. e., the orbit with all correctors switched
off, deviates from the design orbit of the storage ring due
to alignment and field errors of magnets as well as unavoid-
able non-linear magnetic fringe fields. At DELTA, this orbit
is normally not usable for standard synchrotron user oper-
ation, since it implies large beam amplitudes and angles
and thus causes vacuum chamber heatings, reduces injec-
tion efficiency and does not optimally illuminate the syn-
chrotron radiation beamlines. Through empirically adjusted
orbit shifts and optionally by putting weights at dedicated
BPM positions, which increase the impact of orbit deviation
at important ring positions (e. g., beamline source points
or injection septum), a new so-called reference orbit is de-
fined. Nevertheless, due to temperature drifts, malfunctions
and miss-calibrations of BPMs, failure of steerer magnets
as well as variations in BPM weight and offset values, the
currently measured orbit still deviates slightly from the de-
sired reference orbit. An orbit correction (OC) algorithm
keeps these deviations as small as possible. The quality of
an OC algorithm can be expressed by the Euclidean norm
Ex,z =

√∑N
i=1(∆x,z)

2
i . It considers the orbit errors in both

planes (∆x,z) between the currently measured orbit and the
reference orbit at all 54 BPM positions i=1..54. For a more
detailed description see [4].

MACHINE LEARNING DESIGN STEPS
The development of an ML-based OC application passes

six major steps (see Fig. 1). The first steps are data acquisi-
tion (DAQ) and cleaning. Afterwards, the neuron network
topology is defined and optimized. Finally, after multiple
training sessions with continuous performance tests, the OC
application has to be tested in real machine operation. A
number of special programming environments are available
for implementing ML applications. First tests were carried
out within the frameworks TensorFlow [16] and Keras [17].
For investigations conducted in this work, the computing en-
vironment MatLab (Matrix Laboratory) and corresponding
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machine learning toolboxes were used [18]. The essential
development steps are explained in the following sections.

Figure 1: Development stages for an ML-based OC.

Data Mining and Data Cleaning
In order to perform supervised neural network (NN) train-

ing (see Fig. 2a), a large number of data pairs, i. e., BPM
readings (NN inputs) correlated with steerer settings (NN
targets), must be available. These data sets can either be
generated by accelerator simulations, obtained from logged
archive data (e. g., EPICS-log database) or be measured.
ML-based OC simulations were already successful, but only
partially reflect real storage ring behavior [19]. Since ad-
equate experimental data, i. e., large number of randomly
disturbed orbits, from EPICS-log archive was not available,
a special data mining program was implemented. This pro-
gram varies randomly all steerer strengths within an interval
of typically ±200 to 300 mA. The interval limits are a com-
promise between risk of beam loss and minimizing relative
measurement errors due to the limited steerer strength reso-
lution of 2.4 mA. After each perturbation, the differences in
orbit response and in steerer strengths are recorded. Erro-
neous readings (e. g., read/write time-outs, noisy data) are
directly filtered out. On average, approx. 15-20 seconds
are required per single measurement cycle. This way, sev-
eral hundred random steerer-BPM data combinations (cor-
responding to ML input-target data pairs) were recorded in
several measuring sessions.

Measurement of standard orbit response matrices for var-
ious positive and negative single steerer kicks were carried
out similary. All measurements of both sources were merged
to a common data pool of approx. 1500 data pairs to obtain
at least ten times as much training data as neurons in the
neural network (see below).

As an example Fig. 3 depicts the random orbit error (Ex,z)
distribution (ML input data) and the corresponding random

Figure 2: Illustrations of supervised learning (a), neuron
model (b) and neuron activation function (c).

steerer strengths distribution (ML target data). For fixed
dicing limits of ±0.2 A (horizontal steerer), ±0.3 A (vertical
steerer) the center of the orbit error distribution is in the
range of 4 mm (horizontal) and 2 mm (vertical), whereby
larger orbit errors are overrepresented 1.

Figure 3: Measured ML training target (top) and input (bot-
tom) data for the horizontal (blue) and vertical (red) plane.

Definition of the Neural Network Topology
At first a basic NN structure adapted to the orbit correction

problem was defined. It consists of 3 neuron layers with 54
input layer neurons (corresponding to the number of BPMs)
and 30/26 output layer neurons (corresponding to the num-
ber of horizontal/vertical steerers). The number of hidden
neurons was determined empirically by trial and error. It
turned out, that a too large number of hidden neurons (much
more than input neurons) leads to ‘overfitting’ [18] and too
few hidden neurons (much less than output neurons) down-
grades the learning performance. Using the same number

1 Reducing and randomizing the interval limits would shift the Ex ,z -
distributions to smaller values.
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of input neurons as hidden neurons was a good compromise
in many cases.

Since each corrector strength change usually effects the
beam position at all BPMs in the storage ring, a classical
fully-connected feed-forward neural network (FFNN) was
utilized for the neuron network connection topology. This
basic network was extended by further neurons. One neuron
represents the radio frequency (RF) of the storage ring cavity.
An RF change varies the electron energy and thus generates
a dispersion trajectory with orbit shifts at all BPMs. Addi-
tional three neurons consider the actual status of the three
insertion devices (SAW, U250, U55) installed at the DELTA
storage ring. At DELTA, large beam amplitudes at sextupole
magnets integrated into the quadrupole magnets generate
also strong orbit kicks which can be of the same order as
steerer kicks. Up to now, this effect is not considered in the
ML-based OC algorithm but could be taken into account by
additional ’sextupole neurons’. Figure 4 illustrates the neural
network topology utilized for the horizontal orbit plane only.

Figure 4: Feed Forward Neural Network (FFNN) topology
used for ML-based horizontal orbit correction.

Supervised Learning
Before actual FFNN supervised learning can be performed

(see Fig. 2a), all training input data must be normalized to the
value range ±1 of an neuron transfer function (so-called acti-
vation) (see Fig. 2b, 2c). From a multitude of possible func-
tions, the hyperbolic tangent function tanh(x) has proven to
be most suitable. It is point-symmetric and continuously dif-
ferentiable, a necessary condition for many back-propagation
training methods and also shows non-linear behavior close
to the interval limits ±1. An alternative function is the Elliot
sigmoid function f (x) = x/(1 + |x |) (see Fig. 2c), whose
expression does not include a call to any higher order func-
tions2 (e. g. exp(x)) [18]. It was used for first performance

2 Partly a necessary condition for GPU-based learning algorithms.

studies for a more efficient training on a grafical processor
unit3 (GPU).

The network training performance is usually rated by the
mean squared error (MSE). It is calculated by the actual
neural network output oi and the desired target ti values
1
N

∑N
i=1 wi(oi − ti)2 whereby, as an option, each squared

error can be weighted individually (wi).
ML software frameworks provide a large pool of train-

ing methods and functions [16–18]. They were com-
pared regarding their training performance. Best results
were reached with back-propagation methods using the
Levenberg-Marquardt (LM) algorithm with or without
Baysian Regularization (BR) [21, 22] as well as Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm which
updates network weight and bias values according to the
BFGS quasi-Newton method [23]. Pure gradient decent
learning turned out to be slow and often got stuck in local
MSE minima.

All network trainings were also performed with two dif-
ferent numbers of hidden layer neurons, equal to the number
of input or output neurons, respectively. Moreover, for each
training method a variety of so-called training metaparam-
eters to tweak the underlying numerical algorithms (e. g.,
steps sizes, max./min.-limits for gradients or validation fail-
ures, etc.), were checked too. The training data pool (sum of
all related measurements) was divided into three sets with a
fixed splitting ratio:

1. Data for pure training, i. e., adjusting weights and bias
values to minimize the MSE (80%).

2. Validation data is used to prevent learning by pure
memorization, i. e., avoid the overfitting problem (10%).

3. Testing data is used to measure how accurately the
network was trained, i. e., test with "unseen" data (10%).

As an example, Fig. 5 depicts the FFNN supervised learn-
ing performance (MSE) trained with approx. 1500 measured
machine data records (orbit/steerer-data sets). In this case,
best validation performance of 1.4 · 10−4 mm was reached
after 27 LM-BR-training iterations (so-called epochs) apply-
ing all training records at once (so-called full batch training).

Application Results on Real Machine Operation
The best trained NNs, with MSE values less than 3 · 10−4

mm, were tested for OC during real machine operation of
the DELTA storage ring. For this purpose, the current orbit
was defined as an arbitrary reference which could also be
any other predefined orbit. Random kicks were set to all
or individual selected steerers and the orbit error Ex,z of
the orbit response was determined (iteration 0). The result-
ing disturbed orbit was fed into the previously trained NNs,
which were now able to determine the orbit-related steerer
strengths. These values were inverted and transferred back
to the steerers, giving a new closed orbit with a significantly
smaller MSE (first iteration). Repeating this procedere itera-

3 NVIDIA GeForceGTX1060, CUDA Vers. 6.1 [20].
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Figure 5: FFNN supervised learning performance trend
(LM-BR) for the full batch of approx. 1500 measured or-
bit/steerer data sets. Best validation performance (MSE) of
1.4 · 10−4 mm was reached after 27 LM-BR-training itera-
tions (so-called epochs) of all records.

tively reduced the MSE in average nearly by two orders of
magnitude (see Figs. 6, 7).

Figure 6: Iterative application of the pretrained FFNN re-
ferred to the previously corrected orbit, starting from a ran-
domly disturbed orbit (start). After 3 successive correction
steps, an error of < 200 µm was achieved.

The performance of ML-based OC was compared to two
other computing methods, singular value decomposition
(SVD) [4] and qpcone-based (convex optimization) [5, 6],
respectively. Figure 7 depicts exemplarily the horizontal
orbit error Ex depending on correction iterations for ran-
domly disturbed orbits (mean values and standard deviation).
All tested OC algorithms converge to comparable results
after multiple successive correction steps. For ML-based
OC, the absolute closed orbit error was reduced to less than
200 µm after three iterations. This error can be further re-
duced by increasing the number of training data sets in the
small Ex,z-value range (see Fig. 3). The minimum residual
error must be related to the limited BPM readout resolution
of Ex,z =

√
54 · (5µm)2 ≈ 40 µm.

Since sufficiently well trained NNs for both planes were
available, two more OC tests were carried out. (i) Stepwise
power down of a strongly unbalanced orbit bump induced
by steerer-independent DC-coils (starting at an amplitude of
10 mm). (ii) Variation in strength of an unmatched insertion
device (undulator U250). In both cases strong x/z-orbit
disturbances were provoked. The ML-based OC was able to
compensate these distortions in both planes without beam
losses, even though the related data were not teached during
ML.

Figure 7: Performance comparison of different OC imple-
mentations.

SUMMARY
Although the ML-based OC is only a prototype appli-

cation so far, it has been shown that ML techniques are
an alternative approach for automated orbit correction of
the DELTA storage ring. ML incorporates the real storage
ring as it was set up at the time of training data acquisition.
Therefore, all machine imperfections like non-linearities
(e.g. sextupoles) or other-higher order multipoles due to
magnetic fringe fields effects are intrinsically considered.
Even alignment errors and their impact on the closed orbit
can be taken into account. Due to the heuristic approach,
they show once trained fast correction convergence and high
numerical stability and robustness, since only simple matrix
multiplications have to be applied. Moreover, although the
potential has not yet been fully exploited, the residual orbit
error is competitive to SVD-based methods and close to
qpcone-programming-based approaches.

OUTLOOK
Despite ML-based OC is competitive, there is still poten-

tial for optimizations.
Up to now, BPM weights are not taken into account but

can be considered by an additional neuron network layer or
by introducing weighted bias learning.

In order to keep the neural network small and therefore
the training time acceptably short, horizontal and vertical
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OC were treated independently so far. To study x/z-coupling
effects, the fusion of both x/z-NNs is already in preparation.

Large orbit amplitudes in strong sextupole magnets gener-
ate distortions similar to steerer strength changes. This could
be taken into account by including additional ’sextupole neu-
rons’ into the neural network structure. Other NN topology
expansions like the integration of already installed additional
weak but fast steerer magnets for minor orbit corrections
will also be investigated in the near future.

During routine machine operation, the standard OC ap-
plies always small orbit amplitude variations which are close
to the desired reference orbit. These data could be used for
adaptive (on the fly) ML techniques like the so-called ’sliding
windows method’ [24]. However, continuous background
training via ’on the fly’ DAQ requires high computing per-
formance. Here, GPU-based computing could be much
more efficient. First tests showed learning speed gains of
about two orders of magnitude. The disadvantage of time-
consuming NN retraining, due to significant storage ring
setup changes can also be mastered by future introduction
of adaptive learning techniques.

Last but not least, the longterm stability and robustness
of the ML-based OC must further be proven in standard
machine operation.
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