
SYNCHRONISING LabVIEW DEVELOPMENT AND  
DEPLOYMENT ENVIRONMENT 

O. Ø. Andreassen†, C. Charrondière, H. Reymond, A. Rijllart, M. Miskowiec 
CERN, Geneva, Switzerland 

Abstract 
LabVIEW™ with its graphical approach is suited for en-

gineers used to design and implement systems based on 
schematics and designs. Being a graphical language, it can 
be challenging to keep track of drivers, runtime engines, 
deployments and configurations since most of the tools on 
the market aimed towards this are implemented for textual 
languages. Configuration management is possible in the 
development environment via version control systems such 
as Perforce™, however at CERN and in the open source 
software development community in general, the tendency 
is moving towards Git. In this paper we demonstrate how 
the combination of automated builds, packaging, version-
ing and consistent deployment can further ease and speed 
up development, while ensure robustness and coherency 
across systems. We also show how an in-house built tool 
called “RADE Installer” synchronises both development 
environments and drivers across workstations, empower-
ing graphical development at CERN, by merging the open 
source toolchains with the workflow of LabVIEW. RADE 
installer represents a solution for LabVIEW to keep track 
of drivers, runtime engines, deployments and configura-
tions. 

BACKGROUND 
The LabVIEW™ based Rapid Application Development 

Environment (RADE) was conceived as a result of an in-
creasing need to quickly prototype and release controls, 
analysis and test-bench tools in the CERN accelerator do-
main (Fig. 1). The framework was designed to reduce the 
traditional development time without compromising the 
applications’ stability and longevity.  RADE’s multi-tier, 
plugin-based architecture made it possible to develop sim-
ple control applications in hours and at the same time main-
tain them for years [1].  

As the framework grew, so did its dependencies and 
complexity. Adding a change to the framework typically 
would take a day to release. With several changes being 
added every day, it could take weeks to months before they 
were distributed, depending on priority and available re-
sources. This led us to invest in build automation and Con-
tinuous Integration (CI) [2]. 

With the introduction of CI, the release process was re-
duced from one day to about 1 hour (53 minutes) unat-
tended and automated, freeing up the development time.  

In addition, automating the tasks removed typical “oper-
ator errors” from repetitive work and made it possible to 
introduce new toolkits in the framework continuously. An 
added bonus from adopting CI was also the early feedback 

it gave. Since all unit test is executed on every release, the 
developer gets immediate feedback if a change broke a 
module and can start working on solving the issue at once 
[3]. 

 

 
Figure 1: RADE Continuous Integration Process early  
version. 

When the libraries have passed all the unit tests, the CI 
process builds and bundles the libraries in to several single 
target specific installers. 

Reducing the release time made it possible to integrate 
the latest changes and any new features immediately. This 
change in the build philosophy worked well for libraries 
and applications the development team controlled, how-
ever it made it challenging for external users to be in synch 
with the constant change, especially if the release intro-
duced changes to the dependent interfaces that where not 
backwards compatible. This led us to rethink the strategy 
of bundling all RADE libraries in to one big versioned in-
staller and was the main drive behind investing efforts in 
to developing the RADE installer [3][4]. 

THE CHALLENGE 
Version control and tools that automatically updates 

software is nothing new in the development world. There 
are hundreds if not thousands of different tools available 
on the market. The LabVIEW community even has two 
tools that is aimed against installing third party libraries, 
however CERN’s unique infrastructure and platform re-
quirements are limiting factors in what one can choose [5]. 

Selecting the Right Tools 
There are several considerations one has to take when 

integrating network-based components in the CERN infra-
 ____________________________________________  

† odd.oyvind.andreassen@cern.ch 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA129

WEPHA129
1394

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



structure. There are exotic configurations, (Some compo-
nents of the accelerators date back to the 60’s and the in-
frastructure, though renewed, in portions reflect the early 
decisions made at the time), vast network with more than 
150.000 devices (as 2019) and there are multiple layers of 
private and public networks you have to cross to get from 
one point to another [6][7]. 

As a result of that we had to make some considerations 
when selecting the right tool for the job. In our lab and in 
the capacity as a support team, we needed to have a tool 
that could aid in distributing packages that would suit our 
users, at the same time be compatible with the chosen 
standard of NI and LabVIEW: Using the NI Package Man-
ager. We wanted a tool that would: 

• Add value to both the team and our users
• Run on CentOS, Windows and Mac OS
• Be a well-known and supported tool
• Handle cross installation of applications, drivers and

libraries regardless of language and environment
• Support different package types
• Call external resources and use third party installers,

not being limited to a custom or dedicated environ-
ment

• Configurable per project
• Be able to proxy connections and work across all in-

ternal networks via dedicated trusted nodes
• Work as a binding agent between other existing solu-

tions
• Work with a GUI interface, callable from LabVIEW

(both indirectly or directly)
• Work on future versions of LabVIEW

Table 1: Evaluation of Package Managers 
Name Li-

cense 
Local 
Server 

Cross 
Plat-
form 

Mixed 
Lan-
guage 

VIPM [8] Paid Paid Yes No 
NIPM [9] NI Yes No Yes 
OPKG [7] MIT Yes No Yes 
Yum [7] GPLv2 Yes No Yes 
Pip [7] MIT Yes Yes No 

Dpkg [7] GPLv2 Yes No Yes 
Conda [7] BSD Yes Yes Yes 
After evaluating several different commercial and open 

source products (see Table 1), it would initially seem like 
many of the package managers on the market could be suit-
able for our needs, however any cross-platform tool that 
was close to offering what we wanted, either would add a 
higher cost than the added value or it would be tailored to 
its dedicated environment and therefore not suitable for 
the job [7-9]. 

After a few internal review rounds, evaluating tools and 
looking at the results forming from the data, we concluded 
that the best path for us to go, fully being able to control 
and adapt the environment to our need, would be to make 

a custom-tailored tool that could hook in to other existing 
technologies and the same time being compatible with ex-
isting environments, ensuring compatibility and reducing 
risk of cross pollution between installers.   

Versioning and Version Control 
At CERN the IT department has been working towards 

making Git and GitLab the main source control solution 
for the whole lab. In the past we used SVN, but have lately 
adopted Git as our main provider. This decision was mainly 
based on the added value of having the IT department sup-
porting and maintaining the repositories, and lately rein-
forced by the many new functionalies added in the GitLab 
ecosystem [10].  

By using GitLab’s built in rest API in combination with 
our existing CI engine the transition from SVN to Git was 
fairly painless, but took about 4 months to complete. 

“Software upgrade versioning is the process of assign-
ing either unique version names or unique version numbers 
to unique states of computer software. Within a given ver-
sion number category (major, minor), these numbers are 
generally assigned in increasing order and correspond to 
new developments in the software. At a fine-grained level, 
revision control is often used for keeping track of incre-
mentally different versions of information, whether or not 
this information is computer software” [11]. 

In the RADE framework we follow the same principle 
for versioning. In addition, module names are short-
ened/converted to an acronym and the acronym is used in 
all tools that interacts or is related to the module. For in-
stance, if we have a project called “PowerControlSoft-
ware”, the acronym becomes “pcs”, and this acronym is 
then used both on Git, in the project’s documentation page, 
and in any support or correspondence done that relates to 
the module. Then whenever a release is done (after unit, 
integration and requirement testing depending on the mod-
ule criticality), we assign a version number to the release, 
tag it and start the release procedure.  

Figure 2: SVN Naming scheme. 

In the transition from Git to SVN we kept the same nam-
ing scheme (Fig. 2) so the CI engine would be backwards 
compatible with the previous scheme.  

The module tag number is kept all the way from the 
source to the repository. In addition, we have a fixed pro-
ject structure for all developers, making it easier to identify 
where to find the sources and relevant files for each project. 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA129

Software Technology Evolution
WEPHA129

1395

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Repositories 
As with the package managers there are also many dif-

ferent repository tools on the market. Our requirements for 
the repository had many similarities with the package man-
ager environment, however in this case we decided that all 
packages should be hosted in the same environment, re-
moving the cross-platform requirement, and should have 
as much built in logic as possible, moving most of the logic 
from the client to the repository.  

For the repository we wanted a tool that: 
• Had a Representational State Transfer (REST) inter-

face (or similar) for ease of integration [12]
• Automatically indexes packages
• Supports listing and querying
• Supports upload and download of both binary and

source-based packages
• Supports hosting of any software language and file for-

mat
• Fits in the existing CERN OpenStack infrastructure
• Compatible with GitLab
• Compatible with Jenkins

Table 2: Evaluation of Repository Tools 
Name Li-

cense 
API Mixed 

Pack-
age 

Server-
Side 

Manage-
ment 

VIPM [8] Paid No No No 
EOS [13] N/A No Yes No 
GitLab 

[10] 
MIT Yes Yes Yes 

WebSite N/A No Yes No 
Nexus [14] GPL Yes Yes Yes 
PyPI [15] GPLv2 Yes No No 

After evaluating and testing several repository tools, 
some of which are shown in Table 2 above, we narrowed 
the list down to 2 possible candidates that would suite our 
needs: Sonatype Nexus and GitLab. If the selection where 
done today, GitLab would be the clear choice, but at the 
time the comparison was done, GitLab was only meant to 
store source files and not intended to be a repository solu-
tion, and Nexus was the clear choice given its API and fea-
tures. [10, 14]. 

Sonatype Nexus 
Sonatype Nexus Open-Source Software (OSS) is a re-

pository manager. It allows you to proxy, collect, and man-
age your dependencies so that you are not constantly jug-
gling a collection of packages. It makes it easy to distribute 
your software. Internally, you configure your build to pub-
lish artefacts to Nexus and they then become available to 
other developers. You get the benefits of having your own 
local repository at the same time as you can proxy, link and 
share artefacts between other repositories and developers 
[14]. 

RADE INSTALLER 
The RADE installer, following the philosophy of the 

RADE framework, was implemented with ease of use and 
efficiency, in terms of workflow, in mind (Fig. 3). The de-
veloper should not need to focus on versioning and inter 
module compatibility, rather get the necessary dependen-
cies installed with as little interactions as possible. If you 
check out an existing project from git that contains any 
package in the RADE eco system, you only have to refer-
ence the project and the installer will find the implicit de-
pendencies. 

Figure 3: RADE Installer Main interface. 

Any update and new package are visible from the inter-
face, and the user can toggle between “public”, “RADE” 
and “VIPM” packages (Figure 3). The user can also choose 
if updates should be installed automatically (hidden) or 
manually.  

Environment Integration 
The RADE Installer can be launched from within the 

LabVIEW development environment. An option available 
from the “Tools -> RADE” menu will launch a statically 
compiled version of the installer, built using packed project 
libraries. This allows for instant installation of a desired 
package without having to restart LabVIEW. Only in cases 
where a system package requiring restart of the operating 
system does one have to restart the environment [16].  

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA129

WEPHA129
1396

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution



Figure 4: RADE Installer Launcher from LabVIEW 
Environment. 

Installation and Updates 
The RADE installer (Fig. 4) is built like any other RADE 

application package in the CI engine, and will at startup 
check for new releases on the Nexus repository. If there is 
a new version available and the user currently launching 
LabVIEW is authorized to install a new version (same user 
name as previous installation or administrator rights), the 
package will automatically be downloaded and installed 
(Fig. 5). We were thinking of making this feature optional, 
and let the user decide when and where to install the up-
dates, however past experiences have shown that many us-
ers post-pone the updates and quickly gets out of synch 
with the maintained version. Since the installer itself does 
not have any dependency with the packages or applications 
being developed, we deemed it safe to automate the instal-
lation. In the case of a network interruption or timeout, the 
installer will simply time out. If anything was missing or 
incomplete, the installer does not complete the update.  

BUILD CYCLE 
The RADE build cycle has not changed much after in-

troducing the RADE installer and Nexus repository man-
ager. The main challenge was breaking all the different li-
braries into individual installers and map their interdepend-
encies. Since everything in the past was shipped as one big 
package, we didn’t have to manage the interoperability and 
compatibility between packages, however with the new re-
lease scheme, we always have to take care that none of the 
libraries break or fail when doing a release. As an added 
bonus, the release time has gone down even more, and we 
can now release stable packages within minutes and add 
new packages incrementally without affecting users.  

Figure 5: RADE Package Creation Workflow. 

Package Compatibility 
New packages added to the build cycle are either com-

patible with the NI or VI package manager if they are in-
tended to be installed in the LabVIEW environment. This 
means that any package can be installed on a user’s ma-
chine even if he or she does not have the RADE installer 
available or cannot connect to the repositories. This was a 
particularly important requirement in case the development 
environment is outside CERN which often is the case for 
test system. 

REMARKS AND ISSUES 
One of the main challenges with the new installer has 

been to manage user environments and file permissions.  
At CERN we have terminal server with multiple users, 

central development machines and virtual environments 
used by many people.  

The LabVIEW environment relies on relative file struc-
tures, naming and known paths, and it is therefore im-
portant to retain the permissions and structure both the en-
vironment and user expects. This gave us some aha mo-
ments when developing the installer. This was solved by 
having the user “log in” to the installer and use his (en-
crypted) credentials when interacting with the file system. 

Also migrating all the packages from one big bundle to 
individual packages both compatible with the NI installer 
and the VI Package manager and at the same time serving 
our needs, was more manual labor than expected. Once 
done we do not need to maintain or change it, but the initial 
effort should not be neglected.  

Moving from SVN to Git was also a task that proved to 
be more challenging than expected. SVN can be used as a 
monolithic source control system and any subsection of the 
repository can be checked out. Git on the other hand is de-
centralized, distributed and by nature not monolithic. This 
means that the user cannot check out sub portions of the 
repository (could be done with submodules, but this re-
quires quite a bit of hands on work), and it also means that 
the user will have all versions of a project installed locally 
when checking it out/cloning. Fortunately, GitLab had the 
possibility to do break projects into groups and with some 
simple scripting and organization we managed to get a 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA129

Software Technology Evolution
WEPHA129

1397

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



functionality which was as close to what we had before the 
transition, reducing the effort and cost of the migration.  

The RADE Installer still hasn’t been released to all 
CERN users and is still being evaluated internally in the 
team.  

CONCLUSION 
Introducing Nexus and the possibility to break packages 

into singular elements in the RADE CI engine has greatly 
improved our capacity to both release and keep track of 
packages. Cross dependent developments using both Java, 
C++ and LabVIEW have benefitted from the new structure 
and we have become more conscious in designing pack-
ages with test and traceability in mind. The introduction of 
the RADE installer in the team is still an ongoing process, 
but the benefits outweighs the efforts so far. It has become 
easier to share and reuse code, and adding packages to the 
installer encourages a workflow that reduces errors in de-
liveries.  

FUTURE IMPROVEMENTS 
The RADE installer still does not support full environ-

ment synchronization, so the plan is to add this functional-
ity in the next release. We also have to follow closely what 
National Instruments plans to do with their Next Genera-
tion environment and make sure the changes we do are 
compatible with future releases.  

Finally, as time has gone by, more and more features 
have been added to GitLab and it is now (2019) a full 
“DevOps” solution that supports the whole software work-
flow from development, build to release and we are con-
sidering replacing both Jenkins and Nexus with Gitlab.  

REFERENCES 
[1] O. O. Andreassen, D. Kudryavtsev, A. Raimondo, A.

Rijllart, S. Shaipov, and R. Sorokoletov, “The LabVIEW
RADE Framework Distributed Architecture”, in Proc.
ICALEPCS'11, Grenoble, France, Oct. 2011, paper
WEMAU003, pp. 658-661.

[2] M. Rose, “Continuous Integration (CI)”, (2008),
http://searchsoftwarequality.techtarget.com

[3] O. O. Andreassen and A. Tarasenko, “Continuous Integra-
tion Using LabVIEW, SVN and Hudson”, in Proc.
ICALEPCS'13, San Francisco, CA, USA, Oct. 2013, paper
MOMIB08, pp. 74-76.

[4] Wikipedia, “Comparison of version-control software”
https://en.wikipedia.org/wiki/
Comparison_of_version-control_software

[5] B. Frammery, “The LHC Control System”, in Proc.
ICALEPCS'05, Geneva, Switzerland, Oct. 2005, paper
I1_001.

[6] Z. Zaharieva, M. Martin Marquez, and M. Peryt, “Database
Foundation for the Configuration Management of the
CERN Accelerator Controls Systems”, in Proc.
ICALEPCS'11, Grenoble, France, Oct. 2011, paper MO-
MAU004, pp. 48-51.

[7] Wikipedia, “List of software package management sys-
tems”, https://en.wikipdia.org/wiki/
List_of_software_package_management_systems

[8] National Instruments, “VI Package Manager”,
http://www.ni.com/tutorial/12397/en/

[9] National Instruments, “NI Package Manager”,
http://www.ni.com

[10] GitLab, “A Full DevOps Tool”, https://gitlab.com
[11] Wikipedia, “Software Versioning”  

https://en.wikipedia.org/wiki/Software_ 
versioning 

[12] Wikipedia, “Representational State Transfer”, 
https://en.wikipedia.org/wiki/ 
Representational_state_transfer 

[13] CERN, “EOS Open Storage”, http://eos.web.cern.ch
[14] Sonatype, “Nexus Repository OSS”,

https://www.sonatype.com

[15] PyPi, “Python Package Index”, https://pypi.org
[16] National Instruments, “Packed Project Libraries”,

https://zone.ni.com/reference/en-XX/help/
371361R-01/lvconcepts/packed_libraries/

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA129

WEPHA129
1398

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution


