
MANAGING ARCHIVER RULES FOR INDIVIDUAL EPICS PVS
IN FRIB'S DIAGNOSTICS SYSTEM* 

B. S. Martins†, S. Cogan, S. M. Lidia, D. O. Omitto,  
Facility for Rare Isotope Beams, East Lansing, USA 

Abstract 
The Beam Instrumentation and Measurements group at 

the Facility for Rare Isotope Beams is responsible for 
maintaining several EPICS IOC instances for beam 
diagnostics, of different IOC types, which end up 
generating tens of thousands of PVs. Given the 
heterogeneity of Diagnostics devices, the need to archive 
data for scientific and debugging purposes, and space 
limitations for archived data storage, there is a need for 
having per-PV (as opposed to per-Record) archiving rules 
in order to maximize utility and minimize storage footprint. 
This work will present our solution to the problem: "IOC 
Manager", a custom tool that leverages continuous 
integration, a relational database, and a custom EPICS 
module to allow users to specify regular-expression based 
rules for the archiver in a web interface. 

INTRODUCTION 
FRIB’s Beam Instrumentation and Measurements 

department is responsible for a myriad of devices used in 
FRIB's beamline for data collection and monitoring of 
operational parameters, such as Allison Scanners, Profile 
Monitors, Cameras, Beam Position Monitors, Beam 
Current Monitors, among many others. All of these 
devices’ parameters are made available to operators, 
scientists and engineers through the EPICS [1] framework 
as Process Variables (PVs). Currently, there are more than 
200,000 PVs in FRIB’s diagnostics system alone. 
Managing this many PVs across dozens of different IOCs 
presents numerous challenges, especially with regards to 
data archival: FRIB diagnostics PVs archival requirements 
are difficult to implement given some current limitations of 
the EPICS framework and of the EPICS Archiver 
Appliance [2]. These limitations and the solutions to them 
will be presented in this paper. 

Archiver Configuration Enforcement 
Given the limited features of the Archiver Appliance 

API, it is essential that there is a mechanism in place to 
enforce that the desired archiver configuration is in fact, in 
place. 

Non-Regular PV Aliases 
Different users of FRIB’s diagnostics system expect to 

have different views over the same devices: controls 
engineers are typically interested in operational parameters 
of the devices themselves, while operators care about the 
readings and actuation capabilities that devices provide. 

For example, µTCA crates used in FRIB’s diagnostics 
system, such as the one shown in Fig. 1, can host several 
types of fast acquisition cards, each having a number of 
acquisition channels. Controls engineers might be 
interested in the state of the card itself, whereas operators 
might be interested in the readings of a particular channel 
attached to a particular physical device. EPICS provides an 
aliasing mechanism that can be used in this case to provide 
one PV name to engineers and a second, aliased name to 
operators. However, aliasing PVs in batches can be 
cumbersome if the aliases are not uniform. 

Figure 1: A µTCA crate with MCH, CPU, event receiver, 
Pico8, BPM and BCM cards. 

Non-Regular PV Archival Policies 
The second challenge faced by FRIB’s controls 

engineers is the need for having data archival rules on a 
per-PV basis, rather than on a more typical per-Record 
basis. For instance, all ADC channels on a CAENels Pico8 
picoammeter card have the same kind of EPICS Record 
that provides the channel readout, but the archival policy 
for a particular channel depends on what it is connected to: 
channels connected to Faraday Cups may have a different 
policy than channels connected to Halo Monitor Rings, for 
example. In other words, the archival policy must be based 
on a PV alias, not on the underlying record. 

Centrally Managing Archiver Rules 
Lastly, given the variety of device types and the sheer 

amount of diagnostics PVs, it is important to make it easy 
for controls engineers to add, modify and remove archiver 
rules in a central place (as opposed to in each individual 
IOC), as well as to allow the engineer to assess the 
coverage of each rule. 

 ___________________________________________  

* This material is based upon work supported by the U.S. Department of
Energy Office of Science under Cooperative Agreement DE-SC0000661,
the State of Michigan and Michigan State University.
†  martins@frib.msu.edu

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA095

WEPHA095
1312

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management



PV AUTO PROVISIONER AND 
ARCHIVER TAGS 

The PV Auto Provisioner is a standalone program 
developed at FRIB to solve the problem of enforcing the 
archiver configuration. It scans EPICS PV info tags present 
in Channel Finder [3], builds the desired archiver settings 
from the relevant info tags with key “archive” and then 
updates the configuration to the Archiver Appliance. It is 
also capable of generating reports for discrepancies it finds 
between the desired state expressed in Channel Finder and 
the current state found in the Archiver Appliance. 

In order to make use of this system, the controls engineer 
must simply set an “info” tag on a PV with the desired 
archiver configuration. For example, Listing 1 shows a 
record which expects to have its value archived whenever 
it changes (“monitor”), at the maximum rate of 1 Hz 
(“1.0”), with the data being retained for 3 months (“3mo”). 
Then, at IOC startup, the recsync [4] EPICS module will 
push this information to the Channel Finder service, which 
in turn will be scanned by PVAP. 

Listing 1: Example of a PVAP Info Tag 

record(ai, “EXAMPLE”) { 
    info(“archive”, "monitor:1.0,reten-
tion:3mo") 
} 

RETOOLS 
In  order to  solve  the  aliasing and the per-PV archiver  

rules problems, an EPICS module was developed to allow 
info tags to be attached to PVs that have names matching a 
regular expression. This EPICS module, named retools 
(Regular Expression TOOLS) [5], leverages C++11’s 
standard regex library to perform regular expression 
matching and substitution. Among the functions provided 
by retools, two are the most important: reAddAlias and 
reAddInfo. 

reAddAlias 
 reAddAlias adds aliases to the PVs that match a 

given regular expression. It is useful for mapping 
engineering PVs to operation or scientific names. 

  For instance, FRIB uses Pico8 ammeter cards to read 
low current signals. Many Pico8 cards can be put into a 
µTCA crate and each card has eight channels. The 
engineering PV name prefixes capture this architecture by 
having the pattern DIAG_MTCAxx:PICOy_CHz, where xx 
is the number of the  µTCA crate, y is the number of the 
Pico8 card in the crate and z is the channel number. 
Listing 2 shows a few existing PVs in an IOC.

Listing 2: Example of Existing Base PVs 

epics> dbgrep DIAG_MTCA01:PICO8_CH0:* 
DIAG_MTCA01:PICO8_CH0:DESC_RD 
DIAG_MTCA01:PICO8_CH0:TOF_CSET 
DIAG_MTCA01:PICO8_CH0:TRIP_EN_CMD 
DIAG_MTCA01:PICO8_CH0:LAVGNSAMP_CSET 
... 

PVs with engineering names, however, are not 
particularly useful for the operators and scientists that use 
them; instead, they care about the devices that are 
connected to certain Pico8 channels. In this case, Listing 3 
shows how an IOC engineer can use retools to map all PVs 
with a certain engineering prefix to the device prefix 
associated with the Faraday Cup number D0796 installed 
in the LEBT section. 

Listing 3: Example of Adding Aliases 

epics> reAddAlias 
"DIAG_MTCA01:PICO8_CH0:(.*)" \ 

"FE_LEBT:FC_D0796:$1" 
epics> dbgrep FE_LEBT:FC_D0796:* 
FE_LEBT:FC_D0796:DESC_RD 
FE_LEBT:FC_D0796:TOF_CSET 
FE_LEBT:FC_D0796:TRIP_EN_CMD 
FE_LEBT:FC_D0796:LAVGNSAMP_CSET 
... 

reAddInfo 
 reAddInfo adds info tags to the PVs that match a 

given regular expression. In the context of this paper, this 
is useful for adding tags that later will be read by the PV 
Auto Provisioner. For example, Listing 4 shows how 
reAddInfo creates an info tag with key “archive” for all 
Faraday Cup, Halo Monitor Ring, Ion Chamber and 
Neutron Detector current average PVs so they can be 
archived at 2 Hz for 3 months. 

Listing 4: Example of Adding Info Tags 

reAddInfo 
"^.*:(FC|HMR|IC|ND)_D.*[_:]AVG_RD$" \ 

"archive" "monitor:2.0,reten-
tion:3mo" 

The combination of these two retools functions allows a 
controls engineer to first associate certain base PVs with 
device-specific aliases and then add info tags in batches 
based on the aliased names. 

IOC MANAGER 
The last piece in this architecture, built to solve the 

problem of centrally managing archiver rules, is the IOC 
Manager: a web application backed by a SQL database that 
gathers all the existing diagnostics PVs and all the desired 
archiver rules in one place, allowing its users to add and 
remove archiver rules and to see, in real time, how many 
PVs are affected by a particular rule. 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA095

Data Management
WEPHA095

1313

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 2: Simplified IOC manager database schema. 

  The database schema has two logical “sections” (sets 
of tables), as shown in Fig. 2. IOC data, shown in 
blue, and archiver rules, shown in yellow. 

  IOC Data  These tables are populated by Jenkins [6] 
jobs that run every time the code in an IOC source 
control repository changes. Each relevant Jenkins job 
builds the IOC, executes it, collects all of its records 
(name, type, fields, info tags and aliases) via the 
dbDumpRecord funcion and then pushes the 
collected data to IOC Manager, along with metadata 
about the build. 

  Archiver Rules  This section’s tables are populated 
by users of IOC Manager via its web interface. It contains 
the desired archiver rules to be applied to an IOC. Each 
rule entry has two parts: a regular expression that 
identifies which PVs the rule should be applied to and 
the archiver policy to be used on the matching PVs. 

Web Interface 
The web interface exposed by IOC Manager, shown in 

Fig. 3, allows users to add, remove and edit archiver rules 
on specific IOCs and see the coverage of a particular rule 

in real time. All changes are saved in the database. The web 
interface also allows a user to automatically create a pull 
request for an affected IOC’s repository with the updated 
set of archiver rules. 

COMPLETE WORKFLOW 
The workflow to configure archiver rules for a particular 

IOC is as follows. First, controls engineers specify archiver 
rules for a particular IOC via the IOC Manager’s user 
friendly web interface. The same web interface allows the 
engineer to open a pull request on his behalf with an 
updated set of archiver rules for a particular IOC. The set 
of rules is implemented on the IOC via a sequence of calls 
to the retools’ reAddInfo function. The engineer then 
proceeds to the Stash [7] web interface to review and 
approve the changes on the repository. The approval and 
merging of a pull request then triggers a Jenkins job 
associated with the IOC in question, which pulls the latest 
source code, builds it, executes the IOC, collects its data 
and pushes the collected data to IOC Manager. This entire 
process is illustrated in Fig. 4. 

Meanwhile, the updated IOC source code is deployed to 
production via FRIB’s continuous integration and delivery 
system [8]. When the IOC runs, it executes the specified 
list of reAddInfo commands to create the info tags that 
are then pushed to Channel Finder. Finally, the PV Auto 
Provisioner picks up the archiver tags from Channel Finder 
and configures the Archiver Appliance accordingly. 

Figure 3:  Archiver tags in IOC manager’s web interface. 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA095

WEPHA095
1314

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management



Figure 4: Archiver rules workflow. 

CONCLUSION 
The use of PV Auto Provisioner, Channel Finder, 

retools, IOC Manager, Jenkins and Stash allows for a 
very robust, flexible and convenient system for spec-
ifying and specifying archiver rules for the Archiver 
Appliance. A controls engineer that needs to create a 
new archiver rule for many similar PVs, or modify 
such a rule, simply has to input that rule in IOC Man-
ager’s web interface, verify that the rule covers the 
intended PVs and then approve the automatically 
opened pull request. Once the pull request is merged, 
a set of automated tools will make sure that the ar-
chiver rules are correctly reflected in the Archiver Ap-
pliance, and the specified PVs will be correctly ar-
chived. 

REFERENCES 
[1] EPICS, https://www.epics-controls.org
[2] The EPICS Archiver Appliance,

https://slacmshankar.github.io/
epicsarchiver_docs

[3] ChannelFinder, http://channelfinder.github.io
[4] EPICS Record Synchronizer,

https://github.com/ChannelFinder/recsync

[5] EPICS Regular Expression Tools for IOCs,
https://github.com/brunoseivam/retools

[6] Jenkins, https://jenkins.io
[7] Atlassian Stash,

https://www.atlassian.com/software/bitbucket

[8] M. Konrad, D. Maxwell and G. Shen, “Continuous
Integration and Continuous Delivery at FRIB”, in Proc.  11th 
Int. Workshop on Personal Computers and Particle
Accelerator Controls (PCaPAC’16), Campinas, Brazil, Oct.
2016, pp.145-147.
doi:10.18429/JACoW-PCAPAC2016-FRITPLCO01

 

 

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA095

Data Management
WEPHA095

1315

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.


