
TESTING TOOLS FOR THE IBEX CONTROL SYSTEM

T. Löhnert, F. A. Akeroyd, K. Baker, D. Keymer, A. J. Long, C. Moreton-Smith, D. Oram,
ISIS Neutron and Muon Source, Didcot, UK

J. R. Holt, T. A. Willemsen, K. J. Woods, Tessella, Abingdon, UK

Abstract
At the ISIS Neutron and Muon Source [1], we are cur-

rently in the process of replacing the legacy SECI control
system with the next generation IBEX control system [2]
based on EPICS [3]. Since IBEX replaces a fully func-
tional control program, users and developers need to have
confidence that the new system works as well as the old
one, ensuring that the migration does not cause any undue
disruption to beamline operations. Automated testing is an
indispensable tool to continuously ensure our software is
up to the highest standard of quality. This paper gives an
overview of the various types of testing tools we utilize at
ISIS, with a particular focus on our IOC test framework
[4]. This framework has been developed in-house for
testing drivers with simulated devices in order to circum-
vent testing limitations due to beamline/device availabil-
ity.

INTRODUCTION
For the last 5 years, we in the Experiment Control team

have been developing the next-generation instrument
control system called IBEX for use on beamlines in the
ISIS facility. The migration to IBEX is an ongoing pro-
cess, with around half of our beamlines currently running
on the new system. Being such a large, complex and long-
running project make IBEX prone to failure if proper care
is not taken. Consider the following facts:

• IBEX is a complex ecosystem consisting of many
different services. It is not always obvious what im-
pact changes to one component will have on another

• Over the course of its lifetime, over 30 developers
have contributed to the IBEX project, many only for
a limited duration and sometimes early in their soft-
ware engineering careers

• The IBEX system is too complex even for permanent
staff to be familiar with every part of it at any one
time, let alone have in-depth knowledge of it

• Devices are often fixed on the beamline they are
used on. Since beam time is highly valuable, it is of-
ten difficult to get sufficient time to test a new device
driver before it is needed in production. This can
similarly apply to re-testing if changes/updates are
later made

Automated testing helps meet all of the above challeng-
es. A robust set of tests ensures any unforeseen changes in
behaviour are caught before they are deployed to produc-
tion beamlines. Once written, robust tests benchmark any
newly developed code to forever protect it from regres-
sion. Tests can also act as a form of documentation for
unknown parts of the system (in addition to other forms
of documentation), as they demonstrate the expected

behaviour of the component being tested, which is espe-
cially helpful if the original author has since moved on.
Finally, having a well-designed test framework with
strong simulation capabilities goes a long way to ensure
the surprises when testing with a real beamline are kept to
a minimum.

Robust testing practices raise the confidence of the de-
velopers that new code works as intended, and that exist-
ing code continues to work when subjected to changes. It
also helps raise the confidence of users, who are generally
risk-averse that the new control system they are being
given performs its function satisfactorily.

In the following sections, we will explore a selection of
relevant IBEX components, and the tools in place to en-
sure their continued functionality.

IBEX COMPONENTS

Figure 1: Overview of (selected) IBEX components.

IBEX covers a wide range of responsibilities related to
experiment control, from interacting with individual bits
of beamline equipment such as temperature or pressure
controllers, choppers, jaws etc. to managing data collec-
tion and writing the final experiment data file. To this
end, it comprises a number of technologies and services.

Figure 1 shows a schematic of the core system. On the
left side, we have the server comprised of various
backend components:
• A number of devices which are driven through EPICS

Input-Output Controllers (IOCs), which expose rele-
vant values to be read/written to over the network using
the EPICS Channel Access protocol.

• The Instrument Control Program (ICP), which deals
with the neutron data (collection, processing and writ-
ing to file) obtained from the Data Acquisition Elec-
tronics (DAE)

• The Block Server, which is a python process that man-
ages the beamline configuration – i.e. which devices to
control, which sample environment values to log etc.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA090

Software Technology Evolution
WEPHA090

1295

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

On the right hand side, we have various frontend clients
that communicate with the server through which users can
interact with the system:

Figure 2: The IBEX GUI.

• The IBEX GUI – this is an Eclipse/RCP desktop appli-
cation based on the CS Studio framework [5], and rep-
resents the primary form of interaction (shown in Fig.
2)

• Genie_Python [6], a library of python commands used
to interact with the control system via a command line
interface or through running user-written scripts

• The web dashboard, a basic web interface, which pro-
vides a read-only view of the beamline status.

Note that there are many other services and features that
are not included in this selection, for example those that
manage device alarms or logging. However, this repre-
sentative set of core components is useful for illustrating
our use of various different forms of automated testing.

UNIT TESTING
Unit tests are a standard software engineering tool most

developers should already be familiar with. They are used
to test the system “bottom up” by testing the behaviour of
small pieces of code (e.g. individual methods) in isola-
tion, and should complete in a matter of seconds or less.
Each unit test should be strongly focused and mock (sim-
ulate) functionality outside of that which is being tested,
e.g. a test for a method parsing the content of a text file
should never fail on account of a file system error.

Most of the languages used in our code base come with
unit testing frameworks (e.g. JUnit in Java, unittest in
Python). We are conscientious that the code we write is
structured in a way that permits comprehensive testing.
We do this for example by using test driven development
[7], a coding approach where one first writes tests, and
then the code to make them pass, or by conventionally
using a Model-View-Viewmodel pattern [8] for GUI code,
which makes display logic easier to test by separating it
from pure views.

Furthermore, all our unit tests follow certain conven-
tions in terms of test naming and structure. This is helpful
for our developers when trying to understand a previously
unknown part of the system, and thus the tests themselves
serve as a form of documentation.

It has been our policy for several years now to not de-
ploy any new code that does not come with a reasonable

set of tests. As such, out of the components above, the
GUI client, Genie_Python, web dashboard and blockserv-
er components all come with substantial unit test suites.

 Some older parts of the system (such as the ICP) are
missing unit tests because they are rarely touched and we
generally consider them stable, which means implement-
ing unit tests has not become a sufficiently high priority.
In the meantime, we use static code analysis tools to keep
track of test coverage so that we remain aware of such
gaps.

For IOCs, we do not have what would strictly be con-
sidered unit tests, since they require at least a device to
test against. Devices can be arbitrarily complicated, thus
mocking their behaviour is a bit more involved.

DEVICE TESTING
A large part of the work we do is writing IOC drivers

for specific devices used on the beamlines. EPICS pro-
vides meta-languages which make it easy to implement
device drivers, but these are bespoke and do not come
with any testing frameworks. Thus, we have developed an
in-house IOC testing framework which allows you to
write tests in python that test the behaviour of IOCs
against the devices with which they communicate.

Devices are often fixed equipment, meaning we cannot
confirm our drivers behave correctly without having ac-
cess to the beamline, which is not always easy or indeed
possible. With smaller devices, we are sometimes able to
test against the device in the office, but even so, we usual-
ly only have these available for a limited time and there-
fore they are unsuitable for use in a continually running
automated test suite.

Because of this, we simulate the behaviour on the de-
vice side, which we can do at two different levels: The
EPICS record level, and the device level.

Record Simulation
Record simulation is a concept that is built into the EP-

ICS framework [9]. Every one of our IOCs has a “simu-
late” field, which, when enabled, will use a set of aliased
dummy simulation database records instead of the real
ones. These simulated records bypass communication
with a real device and instead use purely virtual values
held in the IOC itself. While it is possible to link simula-
tion records logically (e.g. when setting a setpoint on a
parameter, automatically update its readback value, too),
the EPICS database language is too restrictive to effec-
tively simulate complex device behaviour. Still, record
simulation is useful for confirming basic IOC behaviour
without the need to communicate with a device.

Device Simulation
Device emulators allow us to simulate arbitrarily com-

plex devices. Most of our emulators are written using the
LeWIS package [10]. LeWIS lets you build complex
stateful device simulations in python, emulates a variety
of protocols and provides backdoor access to these emula-
tors to simulate external events such as moving into an
error state after a sensor has been disconnected. Note that

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA090

WEPHA090
1296

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

LeWIS does not depend on the IOC test framework, and
neither does the test framework require emulators to be
written in LeWIS – for instance, we also test drivers for
our new Beckhoff [11] motion controllers against the
vendor-provided emulator.

Figure 3: Schematic of the interaction between emulators,
IOCs and the test framework.

Test Case Example
Following is an example of a test, which checks that

disconnecting the sensor of a temperature controller stops
it ramping. Figure 3 shows the relationship between the
components involved.

1. We start the IOC test suite for a temperature control-
ler. It automatically runs up the relevant device emu-
lator and IOC as defined in the test class. In this case
we only run a single device but test classes may con-
tain multiple IOCs / emulators if necessary, e.g. if we
want to test the interaction between them

2. Once it has confirmed the emulator and IOC have
successfully started up, the framework begins run-
ning the test case.

3. As part of the test case, it instructs the IOC to start
ramping up the temperature via channel access

4. It checks that the emulated device has gone into a
“ramping state”

5. The test procedure now tells the emulator via the
backdoor to act as if the sensor has been disconnect-
ed

6. Finally, we assert with both LeWIS and the IOC that
the device has stopped ramping.

7. Once completed, the test framework runs the test
suite again in record simulation mode (if applicable).
We can specify for each test whether we want to run
it in record or device simulation mode, or both.

At the time of writing, we have emulators for around 60
different devices. Depending on the device, some have
comprehensive test suites with dozens of test cases, while
some may simply check that an IOC successfully boots
and can talk to the emulator. One may think that once a
driver has been written and confirmed to work, there is no
need to repeatedly run these tests, however in reality they
have frequently flagged up broken functionality, e.g.
when a library an IOC depends on has been changed.

Another use of the IOC test framework is to reverse en-
gineer drivers from the old SECI experiment control sys-
tem. Starting with the old driver, we write an emulator
that behaves as that driver expects. We can then write and
validate an IOC against the emulator created in this way.

This is useful as we sometimes have drivers for old
equipment under SECI for which no manuals exist, or
whose manufacturers do not operate any more.

It should be said that there is no replacement for testing
an IOC with the real device as unforeseen things can
always happen (e.g. mistakes in a device manual on
which we base emulator behaviour). However, the IOC
test framework still lets us dramatically reduce the risk
associated with using a new or changed device driver in a
production environment.

GUI/SYSTEM TESTING
Another system component that requires testing is the

graphical user interface of the main IBEX client. A large
portion of the features in the GUI provide access to and
rely on functionality found in the IBEX backend. There-
fore, testing the GUI behaves in the correct way in most
cases means testing the entire IBEX system behaves in
the correct way, and thus GUI tests often double as sys-
tem tests.

Testing the user interface requires input by a user (i.e.
mouse clicking, entering text/values). Thus, originally,
much of our system testing was performed manually by
developers. Running through this set of 100+ tests for a
new release proved to be by far the slowest part of de-
ploying a new version of IBEX. Because of this, today we
use an automated GUI testing tool called Squish [12]. It is
worth noting that Squish is not free software, however
after surveying various available tools, we found it to be
the best option for a number of reasons:
• Squish is easy to use in terms of its API and by provid-

ing functionality to generate test cases from recorded
user interaction

• Test cases can be written in python, a language most of
our developers are already familiar with

• Squish is highly extensible as tests interact with the
application on the OS level, and are therefore inde-
pendent of the language in which the UI is written
Automating these tests mean they can run frequently

without requiring any intervention by the developers. This
gives us confidence that functionality across the entire
IBEX stack is working correctly at any given moment.

In addition to speeding up releases and saving develop-
er time, this tool has helped us find bugs which require
testing that would not be feasible or at least extremely
tedious to perform manually, such as repeatedly going
through a specific workflow to trigger a rare race condi-
tion or to investigate the source of a memory leak.

We also have another set of system tests, which test the
IBEX stack by executing Genie_Python commands in-
stead of interacting with it through the GUI. Both cases
are again aided by simulation – since we do not have real
live neutron data available when running these tests, they
are run with a simulated version of the data acquisition
component, which provides dummy data.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA090

Software Technology Evolution
WEPHA090

1297

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

CONTINUOUS INTEGRATION
For all the virtues of automated tests, they are only use-

ful if they are run frequently. We have set up a continuous
integration system using Jenkins [13], which runs our
various test suites on one of our dedicated build servers
either stand-alone or in the case of unit tests, as part of the
build of the component they are testing.

Figure 4: The IBEX build status board.

The build for a component is run every time it is modi-
fied, and additionally once every night. We have a status
board for all the builds in the IBEX project (see Fig. 4),
which is displayed on a screen in our office so that we as
a team may monitor it constantly. We also explicitly look
at the board as part of our daily stand-up routine, to dis-
cover when and why builds are breaking, so that we may
fix the issues as soon as possible.

Other Utilities

Continuous integration is not limited to running con-
ventional tests on a codebase somewhere. For example,
we use Jenkins to run a number of sanity checks on other
parts of our system, such as:
• Configuration checks: The configuration checker runs a

set of validity tests on beamline configurations, and has
helped us find issues such as invalid IOC settings
meaning the driver would not have run properly, or du-
plicate items in configurations which could have result-
ed in unpredictable behaviour

• Repository checks: These make sure that our git reposi-
tories are properly sanitised, and have caught errors in
the past where submodules were not properly linked,
meaning new code would have failed to be deployed

• Wiki Checks: These tests help ensure our online docu-
mentation is correct, e.g. by checking words are spelled
correctly or URLs contained within are valid

FUTURE WORK
Developing robust tests is equally as important as de-

veloping the IBEX codebase itself, and as such we are
continuously striving to improve our testing infrastruc-
ture. A lot of the processes and tools described in this
paper have been introduced over the course of the project
as a way to manage arising issues by improving maintain-
ability and robustness. While new or changed code writ-
ten for the project today is generally supported by solid
testing, coverage is still far from perfect, particularly in
older parts of the system. We use tools to analyse code
coverage in order to identify parts of the system that re-
quire work in this regard. Improving our unit test cover-
age is one of the most straight-forward ways we have to
increase robustness of the whole system.

Further, we still have some system tests that are yet to
be automated. This is due to limitations on available effort
and having to balance this work with other tasks, taking
into account the risk and effort associated with running
these tests manually only. However, we do occasionally
dedicate a day of development to reducing technical debt
in a specific area of the project – automating the remain-
ing manual system tests is one potential subject for this
activity.

Another arena in which we would like to expand testing
capabilities is user scripts. These are scripts written using
the Genie_Python library, not by the development team,
but by facility users in order to automate their experi-
ments. Inevitably, mistakes sometimes creep into these
scripts, which can on occasion lead to lost beam time, e.g.
an experiment is being run over night with the wrong
parameters. The avenue we are exploring to prevent such
occurrences is by providing a “dry run” option for user
scripts, which simulates the actions in the script (e.g. just
printing them out instead of performing them), which
only takes a few moments after which users can confirm
their correctness before committing to running the actual
script.

CONCLUSION
To summarize, automated testing at various levels has

held a multitude of benefits to the long-term health of the
IBEX project:
• It helps reduce lost beam time as drivers are tested

before being used in production, letting developers re-
solve issues before they arise

• It speeds up the release cycle as time spent on manual
system testing is kept to a minimum.

• Regularly running the full test suite increases confi-
dence in the system

• It prevents regression as broken functionality becomes
visible immediately

• It helps document the code as tests demonstrate what
behaviour is expected

• Testing methodology can be extended to sanitize other
parts of the project beyond purely code

REFERENCES
[1] ISIS Pulsed Neutron and Muon Source,

 http://www.isis.stfc.ac.uk

[2] K. V. L. Baker et al., “IBEX: Beamline Control at ISIS
Pulsed Neutron and Muon Source”, presented at the 17th
Int. Conf. on Accelerator and Large Experimental Control
Systems (ICALEPCS'19), New York, NY, USA, Oct.
2019, paper MOCPL01, this conference.

[3] EPICS Control System Framework,
 http://www.epics-controls.org

[4] IOC Test Framework,
http://www.github.com/ISISComputingGroup/EPI
CS-IOC_Test_Framework

[5] Control System Studio,
 http://www.controlsystemstudio.org

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA090

WEPHA090
1298

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

[6] Genie_Python,
http://www.github.com/ISISComputingGroup/gen
ie_python

[7] Beck, Kent. Test-driven development: by example. Addi-
son-Wesley Professional, 2003.

[8] Garofalo, Raffaele. “Building enterprise applications with
Windows Presentation Foundation and the model view
ViewModel Pattern”. Microsoft Press, 2011.

[9] Wright, R. M., D. M. Kerstiens, G. D. Vaughn, and R. E.
Weiss. “EPICS simulation tools for control system devel-
opment.” No. LA-UR-94-2781; CONF-9408125-18. Los
Alamos National Lab., NM (United States), 1994

[10] LeWIS – Let’s Write Intricate Simulators,
 http://www.github.com/ess-dmsc/lewis

[11] Beckhoff, http://www.beckhoff.co.uk

[12] Squish, http://www.froglogic.com/squish

[13] Jenkins, http://www.jenkins.io

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA090

Software Technology Evolution
WEPHA090

1299

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

