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Abstract 
At the ISIS Neutron and Muon Source [1], we are cur-

rently in the process of replacing the legacy SECI control 
system with the next generation IBEX control system [2] 
based on EPICS [3]. Since IBEX replaces a fully func-
tional control program, users and developers need to have 
confidence that the new system works as well as the old 
one, ensuring that the migration does not cause any undue 
disruption to beamline operations. Automated testing is an 
indispensable tool to continuously ensure our software is 
up to the highest standard of quality. This paper gives an 
overview of the various types of testing tools we utilize at 
ISIS, with a particular focus on our IOC test framework 
[4]. This framework has been developed in-house for 
testing drivers with simulated devices in order to circum-
vent testing limitations due to beamline/device availabil-
ity. 

INTRODUCTION 
For the last 5 years, we in the Experiment Control team 

have been developing the next-generation instrument 
control system called IBEX for use on beamlines in the 
ISIS facility. The migration to IBEX is an ongoing pro-
cess, with around half of our beamlines currently running 
on the new system. Being such a large, complex and long-
running project make IBEX prone to failure if proper care 
is not taken. Consider the following facts: 

• IBEX is a complex ecosystem consisting of many 
different services. It is not always obvious what im-
pact changes to one component will have on another 

• Over the course of its lifetime, over 30 developers 
have contributed to the IBEX project, many only for 
a limited duration and sometimes early in their soft-
ware engineering careers 

• The IBEX system is too complex even for permanent 
staff to be familiar with every part of it at any one 
time, let alone have in-depth knowledge of it 

• Devices are often fixed on the beamline they are 
used on. Since beam time is highly valuable, it is of-
ten difficult to get sufficient time to test a new device 
driver before it is needed in production. This can 
similarly apply to re-testing if changes/updates are 
later made 

Automated testing helps meet all of the above challeng-
es. A robust set of tests ensures any unforeseen changes in 
behaviour are caught before they are deployed to produc-
tion beamlines. Once written, robust tests benchmark any 
newly developed code to forever protect it from regres-
sion. Tests can also act as a form of documentation for 
unknown parts of the system (in addition to other forms 
of documentation), as they demonstrate the expected 

behaviour of the component being tested, which is espe-
cially helpful if the original author has since moved on. 
Finally, having a well-designed test framework with 
strong simulation capabilities goes a long way to ensure 
the surprises when testing with a real beamline are kept to 
a minimum.  

Robust testing practices raise the confidence of the de-
velopers that new code works as intended, and that exist-
ing code continues to work when subjected to changes. It 
also helps raise the confidence of users, who are generally 
risk-averse that the new control system they are being 
given performs its function satisfactorily. 

In the following sections, we will explore a selection of 
relevant IBEX components, and the tools in place to en-
sure their continued functionality. 

IBEX COMPONENTS  

Figure 1: Overview of (selected) IBEX components. 

IBEX covers a wide range of responsibilities related to 
experiment control, from interacting with individual bits 
of beamline equipment such as temperature or pressure 
controllers, choppers, jaws etc. to managing data collec-
tion and writing the final experiment data file. To this 
end, it comprises a number of technologies and services. 

Figure 1 shows a schematic of the core system. On the 
left side, we have the server comprised of various 
backend components: 
• A number of devices which are driven through EPICS 

Input-Output Controllers (IOCs), which expose rele-
vant values to be read/written to over the network using 
the EPICS Channel Access protocol. 

• The Instrument Control Program (ICP), which deals 
with the neutron data (collection, processing and writ-
ing to file) obtained from the Data Acquisition Elec-
tronics (DAE) 

• The Block Server, which is a python process that man-
ages the beamline configuration – i.e. which devices to 
control, which sample environment values to log etc. 
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On the right hand side, we have various frontend clients 
that communicate with the server through which users can 
interact with the system: 

 

Figure 2: The IBEX GUI. 

• The IBEX GUI – this is an Eclipse/RCP desktop appli-
cation based on the CS Studio framework [5], and rep-
resents the primary form of interaction (shown in Fig. 
2) 

• Genie_Python [6], a library of python commands used 
to interact with the control system via a command line 
interface or through running user-written scripts 

• The web dashboard, a basic web interface, which pro-
vides a read-only view of the beamline status. 

Note that there are many other services and features that 
are not included in this selection, for example those that 
manage device alarms or logging. However, this repre-
sentative set of core components is useful for illustrating 
our use of various different forms of automated testing.  

UNIT TESTING 
Unit tests are a standard software engineering tool most 

developers should already be familiar with. They are used 
to test the system “bottom up” by testing the behaviour of 
small pieces of code (e.g. individual methods) in isola-
tion, and should complete in a matter of seconds or less. 
Each unit test should be strongly focused and mock (sim-
ulate) functionality outside of that which is being tested, 
e.g. a test for a method parsing the content of a text file 
should never fail on account of a file system error. 

Most of the languages used in our code base come with 
unit testing frameworks (e.g. JUnit in Java, unittest in 
Python). We are conscientious that the code we write is 
structured in a way that permits comprehensive testing. 
We do this for example by using test driven development 
[7], a coding approach where one first writes tests, and 
then the code to make them pass, or by conventionally 
using a Model-View-Viewmodel pattern [8] for GUI code, 
which makes display logic easier to test by separating it 
from pure views.  

Furthermore, all our unit tests follow certain conven-
tions in terms of test naming and structure. This is helpful 
for our developers when trying to understand a previously 
unknown part of the system, and thus the tests themselves 
serve as a form of documentation. 

It has been our policy for several years now to not de-
ploy any new code that does not come with a reasonable 

set of tests. As such, out of the components above, the 
GUI client, Genie_Python, web dashboard and blockserv-
er components all come with substantial unit test suites. 

 Some older parts of the system (such as the ICP) are 
missing unit tests because they are rarely touched and we 
generally consider them stable, which means implement-
ing unit tests has not become a sufficiently high priority. 
In the meantime, we use static code analysis tools to keep 
track of test coverage so that we remain aware of such 
gaps.  

For IOCs, we do not have what would strictly be con-
sidered unit tests, since they require at least a device to 
test against. Devices can be arbitrarily complicated, thus 
mocking their behaviour is a bit more involved.  

DEVICE TESTING 
A large part of the work we do is writing IOC drivers 

for specific devices used on the beamlines. EPICS pro-
vides meta-languages which make it easy to implement 
device drivers, but these are bespoke and do not come 
with any testing frameworks. Thus, we have developed an 
in-house IOC testing framework which allows you to 
write tests in python that test the behaviour of IOCs 
against the devices with which they communicate.  

Devices are often fixed equipment, meaning we cannot 
confirm our drivers behave correctly without having ac-
cess to the beamline, which is not always easy or indeed 
possible. With smaller devices, we are sometimes able to 
test against the device in the office, but even so, we usual-
ly only have these available for a limited time and there-
fore they are unsuitable for use in a continually running 
automated test suite. 

Because of this, we simulate the behaviour on the de-
vice side, which we can do at two different levels: The 
EPICS record level, and the device level. 

Record Simulation 
Record simulation is a concept that is built into the EP-

ICS framework [9]. Every one of our IOCs has a “simu-
late” field, which, when enabled, will use a set of aliased 
dummy simulation database records instead of the real 
ones. These simulated records bypass communication 
with a real device and instead use purely virtual values 
held in the IOC itself. While it is possible to link simula-
tion records logically (e.g. when setting a setpoint on a 
parameter, automatically update its readback value, too), 
the EPICS database language is too restrictive to effec-
tively simulate complex device behaviour. Still, record 
simulation is useful for confirming basic IOC behaviour 
without the need to communicate with a device. 

Device Simulation 
Device emulators allow us to simulate arbitrarily com-

plex devices. Most of our emulators are written using the 
LeWIS package [10]. LeWIS lets you build complex 
stateful device simulations in python, emulates a variety 
of protocols and provides backdoor access to these emula-
tors to simulate external events such as moving into an 
error state after a sensor has been disconnected. Note that 
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LeWIS does not depend on the IOC test framework, and 
neither does the test framework require emulators to be 
written in LeWIS – for instance, we also test drivers for 
our new Beckhoff [11] motion controllers against the 
vendor-provided emulator.  

  

Figure 3: Schematic of the interaction between emulators, 
IOCs and the test framework. 

Test Case Example 
Following is an example of a test, which checks that 

disconnecting the sensor of a temperature controller stops 
it ramping. Figure 3 shows the relationship between the 
components involved. 

1. We start the IOC test suite for a temperature control-
ler. It automatically runs up the relevant device emu-
lator and IOC as defined in the test class. In this case 
we only run a single device but test classes may con-
tain multiple IOCs / emulators if necessary, e.g. if we 
want to test the interaction between them 

2. Once it has confirmed the emulator and IOC have 
successfully started up, the framework begins run-
ning the test case. 

3. As part of the test case, it instructs the IOC to start 
ramping up the temperature via channel access 

4. It checks that the emulated device has gone into a 
“ramping state” 

5. The test procedure now tells the emulator via the 
backdoor to act as if the sensor has been disconnect-
ed 

6. Finally, we assert with both LeWIS and the IOC that 
the device has stopped ramping. 

7. Once completed, the test framework runs the test 
suite again in record simulation mode (if applicable). 
We can specify for each test whether we want to run 
it in record or device simulation mode, or both. 

At the time of writing, we have emulators for around 60 
different devices. Depending on the device, some have 
comprehensive test suites with dozens of test cases, while 
some may simply check that an IOC successfully boots 
and can talk to the emulator. One may think that once a 
driver has been written and confirmed to work, there is no 
need to repeatedly run these tests, however in reality they 
have frequently flagged up broken functionality, e.g. 
when a library an IOC depends on has been changed.  

Another use of the IOC test framework is to reverse en-
gineer drivers from the old SECI experiment control sys-
tem. Starting with the old driver, we write an emulator 
that behaves as that driver expects. We can then write and 
validate an IOC against the emulator created in this way. 

This is useful as we sometimes have drivers for old 
equipment under SECI for which no manuals exist, or 
whose manufacturers do not operate any more. 

It should be said that there is no replacement for testing 
an IOC with the real device as unforeseen things can 
always happen (e.g. mistakes in a device manual on 
which we base emulator behaviour). However, the IOC 
test framework still lets us dramatically reduce the risk 
associated with using a new or changed device driver in a 
production environment. 

GUI/SYSTEM TESTING 
Another system component that requires testing is the 

graphical user interface of the main IBEX client. A large 
portion of the features in the GUI provide access to and 
rely on functionality found in the IBEX backend. There-
fore, testing the GUI behaves in the correct way in most 
cases means testing the entire IBEX system behaves in 
the correct way, and thus GUI tests often double as sys-
tem tests. 

Testing the user interface requires input by a user (i.e. 
mouse clicking, entering text/values). Thus, originally, 
much of our system testing was performed manually by 
developers. Running through this set of 100+ tests for a 
new release proved to be by far the slowest part of de-
ploying a new version of IBEX. Because of this, today we 
use an automated GUI testing tool called Squish [12]. It is 
worth noting that Squish is not free software, however 
after surveying various available tools, we found it to be 
the best option for a number of reasons:  
• Squish is easy to use in terms of its API and by provid-

ing functionality to generate test cases from recorded 
user interaction 

• Test cases can be written in python, a language most of 
our developers are already familiar with 

• Squish is highly extensible as tests interact with the 
application on the OS level, and are therefore inde-
pendent of the language in which the UI is written 
Automating these tests mean they can run frequently 

without requiring any intervention by the developers. This 
gives us confidence that functionality across the entire 
IBEX stack is working correctly at any given moment.  

In addition to speeding up releases and saving develop-
er time, this tool has helped us find bugs which require 
testing that would not be feasible or at least extremely 
tedious to perform manually, such as repeatedly going 
through a specific workflow to trigger a rare race condi-
tion or to investigate the source of a memory leak. 

We also have another set of system tests, which test the 
IBEX stack by executing Genie_Python commands in-
stead of interacting with it through the GUI. Both cases 
are again aided by simulation – since we do not have real 
live neutron data available when running these tests, they 
are run with a simulated version of the data acquisition 
component, which provides dummy data. 
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CONTINUOUS INTEGRATION 
For all the virtues of automated tests, they are only use-

ful if they are run frequently. We have set up a continuous 
integration system using Jenkins [13], which runs our 
various test suites on one of our dedicated build servers 
either stand-alone or in the case of unit tests, as part of the 
build of the component they are testing. 

 

 

Figure 4: The IBEX build status board. 

The build for a component is run every time it is modi-
fied, and additionally once every night. We have a status 
board for all the builds in the IBEX project (see Fig. 4), 
which is displayed on a screen in our office so that we as 
a team may monitor it constantly. We also explicitly look 
at the board as part of our daily stand-up routine, to dis-
cover when and why builds are breaking, so that we may 
fix the issues as soon as possible. 

  
Other Utilities 

Continuous integration is not limited to running con-
ventional tests on a codebase somewhere. For example, 
we use Jenkins to run a number of sanity checks on other 
parts of our system, such as:  
• Configuration checks: The configuration checker runs a 

set of validity tests on beamline configurations, and has 
helped us find issues such as invalid IOC settings 
meaning the driver would not have run properly, or du-
plicate items in configurations which could have result-
ed in unpredictable behaviour 

• Repository checks: These make sure that our git reposi-
tories are properly sanitised, and have caught errors in 
the past where submodules were not properly linked, 
meaning new code would have failed to be deployed 

• Wiki Checks: These tests help ensure our online docu-
mentation is correct, e.g. by checking words are spelled 
correctly or URLs contained within are valid  

FUTURE WORK 
Developing robust tests is equally as important as de-

veloping the IBEX codebase itself, and as such we are 
continuously striving to improve our testing infrastruc-
ture. A lot of the processes and tools described in this 
paper have been introduced over the course of the project 
as a way to manage arising issues by improving maintain-
ability and robustness. While new or changed code writ-
ten for the project today is generally supported by solid 
testing, coverage is still far from perfect, particularly in 
older parts of the system. We use tools to analyse code 
coverage in order to identify parts of the system that re-
quire work in this regard. Improving our unit test cover-
age is one of the most straight-forward ways we have to 
increase robustness of the whole system.  

Further, we still have some system tests that are yet to 
be automated. This is due to limitations on available effort 
and having to balance this work with other tasks, taking 
into account the risk and effort associated with running 
these tests manually only. However, we do occasionally 
dedicate a day of development to reducing technical debt 
in a specific area of the project – automating the remain-
ing manual system tests is one potential subject for this 
activity. 

Another arena in which we would like to expand testing 
capabilities is user scripts. These are scripts written using 
the Genie_Python library, not by the development team, 
but by facility users in order to automate their experi-
ments. Inevitably, mistakes sometimes creep into these 
scripts, which can on occasion lead to lost beam time, e.g. 
an experiment is being run over night with the wrong 
parameters. The avenue we are exploring to prevent such 
occurrences is by providing a “dry run” option for user 
scripts, which simulates the actions in the script (e.g. just 
printing them out instead of performing them), which 
only takes a few moments after which users can confirm 
their correctness before committing to running the actual 
script. 

CONCLUSION 
To summarize, automated testing at various levels has 

held a multitude of benefits to the long-term health of the 
IBEX project:  
• It helps reduce lost beam time as drivers are tested 

before being used in production, letting developers re-
solve issues before they arise 

• It speeds up the release cycle as time spent on manual 
system testing is kept to a minimum.  

• Regularly running the full test suite increases confi-
dence in the system 

• It prevents regression as broken functionality becomes 
visible immediately 

• It helps document the code as tests demonstrate what 
behaviour is expected 

• Testing methodology can be extended to sanitize other 
parts of the project beyond purely code 
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