
Abstract

EPICS V3 provides simple data types accessible over the

network through Channel Access identified by a flat process

variable (PV) name. This flexibility is often regarded as a

strength of EPICS, as the user can easily pick and choose

the information they require. However, such data is almost

always inter-related in some manner, pushing the burden of

reconstructing that relationship to the end-user/client.

ophyd represents hardware in Python as hierarchical

classes, grouping together related signals from the underly-

ing control system. ophyd devices make imposing this hierar-

chy simple, readable, and descriptive. This structure allows

ophyd to provide a consistent interface across a wide-range

of devices, which can then be used by higher-level software

for any number of tasks: from command-line inspection, to

scanning/data collection (bluesky), or even automatic GUI

generation (typhon, adviewer). ophyd contains a number of

pre-built devices for common hardware (and IOCs) as well

as the tools to build custom devices.

BACKGROUND

EPICS and PVs

Standard EPICS IOCs host a process database of records.

Records, which generally hold a primary value in the field

.VAL along with related metadata in other appropriately-

named fields (e.g., .DESC for description, .EGU for engineer-

ing units, etc.), are made available to clients and other servers

over the Channel Access (CA) protocol. In a properly con-

figured network of IOCs, records are almost always uniquely

named such that only one IOC on one machine serves infor-

mation from its database. At that point, a specific field of a

record RECORD.FIELD over CA is often referred generically

to as getting or putting to a Process Variable (PV).

Values along with a fixed set of metadata can be retrieved

over CA in a single request. In CA, it is not possible to

group together multiple requests and have the server return

an atomic result.

Much additional work has been put into the most recent

major version of EPICS (V7) in recent years to bring struc-

tured data to the protocol level, which is not currently possi-

ble in Channel Access, with a new protocol called PVAccess.

This addition allows for keeping structured data accessible

and synchronized at the IOC server level.

Such synchronization is outside of the scope of ophyd,

which currently relies on CA to retrieve or change PVs on

IOCs.

∗ Work supported by U.S. D.O.E. Contract DE-AC02-76SF00515.
† klauer@slac.stanford.edu

While ophyd does not currently have PVAccess support,

it is a feature that is currently in the planning stages. The

composability, configurability, and consistent API of devices,

as described in later sections, will still apply when ophyd is

PVAccess-capable – even allowing for CA, PVAccess, and

soft/simulation signals to be mixed in as-needed.

There are thousands of deployed EPICS V3 servers that

may never see an upgrade to V7 for a variety of reasons,

meaning that the relevance of CA and related higher-level

applications will likely persist for decades.

SIGNALS

ophyd.Signal

An ophyd Signal represents the smallest set of data a

user might be interested in – a single temperature value,

a PID setpoint or readback, and so on. The data held by a

Signal may be structured and may have additional metadata

associated with it, including timestamps and control limits.

Signals can be used in isolation, instantiated as needed.

The strength of ophyd comes in when signals are used in

conjunction with devices, which is detailed in the next sec-

tions.

ophyd.EpicsSignal

A subclass of ophyd.Signal, an EpicsSignal bridges

the gap between CA and the ophyd signal interface.

As setpoints and readback values are often separate PVs

in EPICS, an EpicsSignal allows for specifying a PV to

write to (setpoint) and a PV from which to read (readback).

A simple example might be that of the motor record1,

where the user-setpoint .VAL and the user-readback .RBV

are fields of the same record:

motor = ophyd.EpicsSignal(

write_pv='MOTOR.VAL',

read_pv='MOTOR.RBV',

name='value')

status = motor.set(3.0)

Signals may also be enforced to be read-only at the ophyd

layer, on top of any access rights enforced at the IOC level.

These signals are differentiated easily by the RO suffix on the

class – i.e., EpicsSignalRO.

For example, the following is effectively caput

PV:NAME.VAL 3.0:

1 There is first-class Device support in ophyd for motor record. See

ophyd.EpicsMotor.

K. Lauer†, SLAC National Accelerator Laboratory, Menlo Park, A

A Short Note about PVAccess

ophyd DEVICES: IMPOSING HIERARCHY
ON THE FLAT EPICS V3 NAMESPACE ∗

SU

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA083

WEPHA083
1284

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

value = ophyd.EpicsSignal(

'PV:NAME.VAL', name='value')

status = value.set(3.0)

Whereas the following raises ReadOnlyError without

reaching out to CA:

value = ophyd.EpicsSignalRO(

'PV:NAME.VAL', name='value')

value.set(1.0)

As records in EPICS largely contain a single value and its

metadata, a single setpoint from the user and its associated

readback value from hardware are often split into two distinct

records.

Several conventions exist for easily identifying a setpoint

record to a readback record solely by the name – making it

trivial, even as a client with just a PV name – to determine

the directionality of the record.

In areaDetector the convention for identifying a

setpoint record compared to a readback record is

the suffix _RBV. For example, the acquire time set-

point and readback PV for the simulation detec-

tor example are 13SIM1:cam1:AcquireTime and

13SIM1:cam1:AcquireTime_RBV, respectively.

A simple shortcut is provided in ophyd to work with these

types of areaDetector PVs – ophyd.EpicsSignalWithRBV

– which requires only the setpoint prefix. The entirety of

the class is as follows, making it a thin wrapper around

EpicsSignal:

class EpicsSignalWithRBV(EpicsSignal):

def __init__(self, prefix, **kwargs):

super().__init__(prefix + '_RBV',

write_pv=prefix,

**kwargs)

An example of usage might be:

acq = EpicsSignalWithRBV(

'13SIM1:cam1:AcquireTime', name='acq')

where it’s worth noting the following:

• acquire.get(), acquire.read() use the readback

PV

• acquire.put() performs effectively a caput to the

setpoint (i.e., write) PV

• .set() writes to the setpoint and returns a

ophyd.Status object indicating when the readback

and setpoint match (i.e., the hardware acknowledged

the write and reflected the request in the readback

value).

The place for other control systems which work on a

signal-by-signal basis to be made compatible with ophyd is

by subclassing Signal. For example, a Beckhoff TwinCAT3

PLC communication protocol called ADS was recently im-

plemented for the Linac Coherent Light Source, allowing

direct ophyd communication with all deployed Beckhoff

PLCs.

Discussions are also underway between the ophyd devel-

opers and with facilities that primarily use Tango.

ophyd signals support the bluesky interface directly, allow-

ing for their usage in data acquisition routines and scanning.

Among others, Signal offers the following bluesky-

required items 2:

• A unique human-readable name, accessible via the

.name attribute.

• An indication of hierarchy, noting its parent in an at-

tribute .parent. Signals used in isolation have no

parent.

• A .describe() method, indicating the type of infor-

mation held in the signal, such as:

{

'signal_name': {'source': 'PV:NAME',

'dtype': 'number',

'shape': [],

}

}

• A .read() method, representing the data held by the

signal in a consistent way:

{

'signal_name': {'value': 1.3,

'timestamp': 0,

}

}

where timestamp would be a valid UNIX timestamp.

• A .set() method, which effects a "put" to the under-

lying control system and returns a sort of "future" – an

ophyd.Status – object which indicates the comple-

tion status of the request.

• .subscribe() and .clear_sub() methods, allow-

ing for monitoring of changing values with a provided

callback function.

DEVICES

Devices in ophyd are intended to represent the next level

above signals, in a hierarchical sense.

In creating a new device, the programmer:

• Subclasses ophyd.Device or a subclass thereof.

• Groups relevant signals and devices, each of which is

referred to as a Component..

• Optionally indicates the relative importance of each

component by noting a kind.

In practice, this means that an ophyd.Device can be com-

posed of one or more ophyd.Signal or ophyd.Device.

2 See the "Readable Device" section of https://blueskyproject.io/

bluesky/hardware.html for more information.

Read-back and Setpoint Conventions

Signals in Other Control Systems

The bluesky Interface

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA083

Device Control and Integrating Diverse Systems
WEPHA083

1285

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

There are built-in device abstractions with ophyd, taking

the burden of re-creating many common devices from the

end-user:

• Motor record

• Scaler record

• Multi-channel analyzers and DXP from synApps

• areaDetector cameras and plugins (see Table 1)

• Simulation devices (signal, motor, detector)

Assume the following EPICS PVs are available

from a network-accessible IOC: Prefix:1:ItemA,

Prefix:1:ItemB, Prefix:2:ItemA, Prefix:2:ItemB.

A basic user-defined device might look like the following:

from ophyd import (Device, EpicsSignal,

Component)

class MyDev(Device):

a = Component(EpicsSignal, 'ItemA')

b = Component(EpicsSignal, 'ItemB')

This defines a device class named MyDev, which sub-

classes ophyd.Device. It has two Components, each of

which is an EpicsSignal. As Component is of the form,

Component(class, suffix=None, **kwargs), the a

component has a suffix "ItemA", and the b component has

a suffix "ItemB".

The device could then be instantiated one or more times:

dev_1 = MyDev('Prefix:1:', name='dev_1')

dev_2 = MyDev('Prefix:2:', name='dev_2')

Upon instantiation, dev_1.a is made to be an

EpicsSignal with the full PV Prefix:1:ItemA. Simi-

larly dev_2.b is made to be an EpicsSignal with the full

PV Prefix:2:ItemB.

The entire device could be read through the bluesky inter-

face, e.g.:

dev_1.read()

This would read and package values and timestamps from

PVs Prefix:1:ItemA and Prefix:1:ItemB into a dictio-

nary such as:

{

'dev_1_a': {'value': 0.5,

'timestamp': 1569706862.023

},

'dev_1_b': {'value': 2.0,

'timestamp': 1569706861.142

},

}

Similarly, individual components could be used as normal

EpicsSignals:

dev_1.a.read()

Why not just EpicsSignal? In this simple case, it

would be acceptable for the user to create individual

EpicsSignal instances to communicate with the IOC with-

out a device grouping the signals together. The convenience

and utility of the abstraction shines in the scenario where

one or more of the following apply:

• Many components exist (e.g., items from A–Z and not

just A, B).

• Many devices exist with only a differing prefix.

• Existence of device-specific utility functions exist that

should operate on one or more of the components.

• The desire to use the device in a data acquisition sce-

nario.

Prefixes

Prefixes are additive. That is, instantiating a device with

a prefix will take individual component suffixes and append

them to the device prefix to make full PV names that EPICS

would recognize.

This type of structuring has a few implications:

• PV names should be sensibly formed

with a delimiter, with individual portions

sorted from least to most specific, e.g.,

FACILITY:AREA:DEVICE:COMPONENT.FIELD.

• Device components should all share the same prefix

• Devices group signals such that they may be reused

– instantiated as-is or combined and composed into a

higher-level device

While the author believes that the aforementioned struc-

ture is beneficial enough to impose naming standards on the

IOC level, in some facilities (or for some specific devices),

it may not always be a possibility.

In such cases, it is possible to either disable the

prefix-joining functionality or use a FormattedComponent.

FormattedComponent allows for a format string to be used,

similar to macros in IOC startup scripts or PyDM, EDM,

CSS, etc screens.

ophyd allows for the classification of components by

level of interest. This is referred to as a component kind.

Four kinds are currently recognized: ŤconfigŤ, ŤhintedŤ,

ŤnormalŤ, and ŤomittedŤ. A single kind may be speci-

fied as a string value, or multiple kinds can be specified by

bitwise or-ing ophyd.Kind flags.

• ŤconfigŤ – a configuration component, which is not

likely to change frequently and may give an indication

as to how a device was set up prior to a scan or data

acquisition routine. For a detector that mostly uses

fixed exposure times throughout a scan, exposure time

might be considered a ŤconfigŤ component. This

kind is often the majority of those seen on a device.

• ŤnormalŤ – a component which is important enough to

be read at every point during a scan. For example, a mo-

Ready-to-use Devices

Basic Form

Kinds, Hints, and Labels

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA083

WEPHA083
1286

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

tor setpoint or readback position might be a ŤnormalŤ

component.

• ŤhintedŤ – a component which acts as an indicator

to higher-level routines that the component could be

used for plotting or in a table, etc. It also implies the

ŤnormalŤ flag.

• ŤomittedŤ – a component which is largely unimpor-

tant as far as data acquisition is concerned, but may be

included for completeness of the device description.

Additional parts of the bluesky interface take advantage

of these kinds:

• read_configuration() which reads all components

marked as ŤconfigŤ.

• describe_configuration() which describes all

components marked as ŤconfigŤ.

• hints which enumerates data fields coming from com-

ponents marked as ŤhintedŤ.

Devices, like all ophyd object (ophyd.OphydObj) sub-

classes, may carry versioning information directly in the

class definition. Three parameters are currently available to

describe the version:

• version – the version number itself, which should be

a tuple of integers or any other unambiguously sortable

value.

• version_of – the earliest versioned class.

• version_type – an indicator of what the version

refers to, likely a string containing an IOC release ver-

sion, detector firmware version, or similar.

For example, an IOC named XyzIOC is released with

support for XyzDevice. The IOC has a 1.0 and a 2.0 release,

in which the API provided by the PVs changes in some

significant manner, and both are deployed at a single facility.

The device classes might look like the following:

class XyzDevice(ophyd.Device,

version=(1, 0),

version_type='XyzIOC'):

value = Cpt(EpicsSignal, 'OldPV')

...

class XyzDevice_V20(XyzDevice,

version=(2, 0),

version_of=XyzDevice,

version_type='XyzIOC'):

value = Cpt(EpicsSignal, 'NewPV')

...

It is then possible to programmatically select a version:

cls = ophyd.select_version(

XyzDevice, (2, 1))

where cls is set to the latest compatible version,

XyzDevice_V20.

Introspecting Devices

Devices have some built-in functionality for user conve-

nience, allowing for inspecting devices either interactively

in the Python command-line interface or programmatically.

Instantiating the device from the previous section, a use-

ful representation (referred to as a repr) is immediately

available:

In [1]: dev = XyzDevice_V20('Dev:',

name='dev')

In [2]: dev

Out[2]: XyzDevice_V20(prefix='Dev:',

name='dev', read_attrs=['value'],

configuration_attrs=[])

As Device-based classes define the interface, it is not

necessary to instantiate one to find information about it:

In [3]: XyzDevice_V20.component_names

Out[3]: ('value',)

In [4]: XyzDevice_V20.value

Out[4]: Component(EpicsSignal, 'NewPV',

kind='normal')

Components are accessible through tab completion, such that

typing dev.v and pressing Tab would result in dev.value.

Some additional attributes of note are:

• .parent – instantiated objects are aware of their loca-

tion in the device hierarchy, including the path back to

the top-level (.root) device.

• .attr_name – the dotted attribute name, allowing ac-

cess to the component from the root.

• .component_names – a list of available components.

• .connected – a boolean indicator of the connectivity

status of all contained components.

Composing Devices

As ophyd devices designed for reusability, devices can be

composed into higher-level abstractions. Take, for example,

a point detector that is atop an XY translation stage. These

could be readily combined as follows:

from ophyd import (

Device, Component as Cpt,

EpicsSignalRO, EpicsMotor)

class DetAndMotor(Device):

diode = Cpt(EpicsSignalRO, 'Diode')

motor = Cpt(EpicsMotor, 'Motor')

both = DetAndMotor('AREA:', name='both')

both could then be used in such a way:

Versioning Devices

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA083

Device Control and Integrating Diverse Systems
WEPHA083

1287

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

both.diode.read()

both.motor.velocity.set(1.0)

both.motor.velocity.kind = 'normal'

both.read()

This type of composition is often found to be useful by

beamline end-users, as it readily allows for exploration and

configuration of related devices on the command-line.

Conclusion

ophyd devices make imposing the hierarchy of devices

simple, readable, and descriptive. The devices group to-

gether related signals from the underlying control system.

This structure then provides a consistent interface across a

wide-range of devices by design, which can then be used by

higher-level software for a variety of tasks.

REFERENCES

[1] EPICS – Experimental Physics and Industrial Control System,

https://epics.anl.gov/

[2] ophyd and the bluesky project

https://blueskyproject.io/

Plugins Cameras

AttrPlotPlugin AdscDetectorCam

AttributePlugin Andor3DetectorCam

CircularBuffPlugin AndorDetectorCam

CodecPlugin BrukerDetectorCam

ColorConvPlugin DexelaDetectorCam

FFTPlugin FirewireLinDetectorCam

FilePlugin FirewireWinDetectorCam

GatherPlugin GreatEyesDetectorCam

HDF5Plugin Lambda750kCam

ImagePlugin LightFieldDetectorCam

JPEGPlugin Mar345DetectorCam

MagickPlugin MarCCDDetectorCam

NetCDFPlugin PSLDetectorCam

NexusPlugin PcoDetectorCam

Overlay PerkinElmerDetectorCam

OverlayPlugin PilatusDetectorCam

PluginBase PixiradDetectorCam

PosPlugin PointGreyDetectorCam

ProcessPlugin ProsilicaDetectorCam

PvaPlugin PvcamDetectorCam

ROIPlugin RoperDetectorCam

ROIStatPlugin SimDetectorCam

ScatterPlugin URLDetectorCam

StatsPlugin

TIFFPlugin

TimeSeriesPlugin

TransformPlugin

Table 1: areaDetector Support in ophyd

[3] areaDetector: EPICS software for area detectors
https://cars9.uchicago.edu/software/epics/
areaDetector.html

,

,

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA083

WEPHA083
1288

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Device Control and Integrating Diverse Systems

