
CO-SIMULATION OF HDL USING PYTHON AND MATLAB OVER Tcl
TCP/IP SOCKET IN XILINX VIVADO AND MODELSIM TOOLS

Ł. Butkowski*, B. Dursun, C. Gumus, M. K. Karakurt
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Abstract
This paper presents the solution, which helps in the simu-

lation and verification of the implementation of the Digital
Signal Processing (DSP) algorithms written in hardware de-
scription language (HDL). Many vendor tools such as Xilinx
ISE/Vivado or Mentor Graphics ModelSim are using Tcl as
an application programming interface. The main idea of the
co-simulation is to use the Tcl TCP/IP socket, which is Tcl
build in feature, as the interface to the simulation tool. Over
this interface the simulation is driven by the external tool.
The stimulus vectors as well as the model and verification
are implemented in Python or MATLAB and the data with
simulator is exchanged over dedicated protocol. The tool,
which was called cosimtcp, was developed in Deutsches
Elektronen-Synchrotron (DESY). The tool is a set of scripts
that provide a set of functions. This tool has been success-
fully used to verify many DSP algorithms implemented in
the FPGA chips of the Low Level Radio Frequency (LLRF)
and synchronization systems of the European X-Ray Free
Electron Laser (E-XFEL) accelerator. Cosimtcp is an open
source available tool.

INTRODUCTION
The correct operation of the Low Level Radio Frequency

(LLRF) [1] and synchronization systems of the European X-
Ray Free Electron Laser (E-XFEL) [2] accelerator requires a
huge amount of Digital Signal Processing (DSP) calculations
in real time. This task is mainly handled by FPGAs. In
the high level design stage, the first step is to determine the
exact algorithms that has to be implemented in FPGAs so the
machine can operate. This work is executed with the help of
tools such as MATLAB with Simulink or Python. Solutions
are simulated and the exact formula is derived. Next the
implementation process starts in which the code written in
hardware description language (HDL) is developed. During
this process the following problem always appear: how to
verify functionality of written HDL code.

There are a few ways we can solve this problem. There
are available methodologies and libraries which can help go
trough this process. It is very common to write the testbench
using HDL first. Next phase is to write the model of the
component under test in order to go through the verification
process. However, writing the DSP algorithm model in HDL
is really difficult and time consuming. Additionally there
is risk of introducing new errors in the model, which fail
our verification. Most wanted in the verification process
would be to use directly the same tools as the one in the high

∗ lukasz.butkowski@desy.de

level design in a co-simulation process. This can improve
significantly verification [3].

There are already available methods of HDL co-
simulation with the use of high level programming languages.
One of the way to use high level programming languages like
C in a verification process is to use Direct Programming Lan-
guage Interface (DPI) of the System Verilog [4] or Foreign
Language Interface (FLI) [5] of the simulation tool. The
simulation is fast but this method is not so straight forward
and easy to use. It is platform depended or tool depended
and requires recompilation of the code every change. One of
the another way is to use Programming Language Interface
(PLI) like the file input/output interface using the VHDL
textio library [6]. This method has limitation in interactive
simulations and reuseability.

We came with and another idea. Almost all of the HDL
simulator tools support Tcl script language as an application
programming interface, enabling control of the simulation
using TCL commands. It also means that all the default Tcl
features are available in the tool. The idea proposed was to
use these features as the communication layer between HDL
simulation tool and an external tool. The Tcl socket function
has been found as a perfect candidate for this role. It is a
build in command which opens a TCP network connection.
The communication between simulation tool and high level
language is done over TCP/IP socket. This is a good separa-
tion between these two. The solution gives a good balance
between reuseability, easy to use and simulation speed. The
TCP/IP socket protocol is well-know, widely used and has a
build-in support in many tools.

The solution we came up with has been called cosimtcp
[7]. It is a set of script in the form of libraries, which can be
easily added to current or new simulation flow. Currently
the solution is used with Xilinx Vivado, ModelSim, Matlab
and Python tools.

In the following chapters the steps that has to be done to
run simulation using cosimtcp libraries will be presented.
Also the examples of the usage will be given. In the end
prons and cons of this solution will be discussed.

CO-SIMULATION ARCHITECTURE

The block diagram of the co-simulation is presented in
Figure 1. The simulation is divided into two main blocks.
The server side: responsible for the HDL simulation of Unit
Under Test (UUT) and the client side: responsible for the
generation of stimulus and verification. Between them the
data are exchanged using a dedicated protocol over a socket
connection. There is one protocol used among all the tools.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA023

Hardware Technology
WEPHA023

1127

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Client

tcl
testbench

unit
under
tests

(UUT)

clock

driver buf

recv buf

TCP/IP
socket

protocol

simulator
control

HDL testbench entity

HDL simulation tool (Vivado/ModelSim)

stimulus
generation

data
analyzer

signal aliases
definitions

Server

Python/Matlab/..

cosimtcp libraries

Master

Slave

Figure 1: VHDL Co-Simulation block diagram using cosimtcp.

The server is a slave that executes the instructions of the
master, which is the client.

Protocol
The communication protocol between the client and the

server is based on string commands, which are send over
established TCP/IP socket connection. There are a few main
commands:

• set <object name> <buffer offset> <data vector>
client request: fill the input buffer with the data vector
of the specified object starting with the given buffer
offset
server response: buffer fill done

• get <object name> <buffer offset>
client request: send the data from the output buffer of
the specified object
server response: returns data vector from the buffer

• sim run <steps> <step time> <time unit> <mode>
client request: run simulation in the number of steps
with the specified time step,
simulation can be run in various modes: do not record
data in buffers, start from the beginning, continue
server response: simulation steps done

• cmd <command>
client request: execute system command like restart or
quit simulation
server response: command executed

Server
The server side is implemented on the HDL simulator tool.

The tool executes a Tcl script in which the server function is
run. The main task of the server is to:

• listen for and accept incoming connections on socket,
server can accept only one client at a time

• translation of incoming commands into executable func-
tions of HDL simulator

• run and control simulation

• send back requested data

The flow diagram of the server operation is presented in
Figure 2. After accepting connection, the server goes to the
idle state where it waits for incoming commands. The server
has two buffers. The first one is used to store the value of the
input objects. This buffer is filled with data by the client. The
second one is used to store the value of the output objects.
This buffer is filled with the values during the simulation.
The simulation is executed in steps. In each step, the values
from the input buffer are set to input objects, and the values
of output objects are saved in output buffers. Next the pointer
of the data buffers is incremented and the simulation run for
one step. Only the values of the objects defined in the list are
set or examined. The simulation is controlled with the Tcl
commands available in the tool. In the case of ModelSim
these are: force to set object value, examine to read object
value and run to run simulation step. In the case of Vivado
they are respectively: add_force, get_value, run.

Wait for
connection

IDLE

set buffer

input
buffers

run simmulation
step

put object value
in buffers

set object value
from buffers

all steps?

output
buffers

get buffer

close
connection

increment pointer

restart simulation
reset pointer

simulate

output
objects list

input
objects list

get <> set <>
sim run <>

cmd

restart
close

yes

no

Figure 2: Server side flow diagram.

Client
Cosimtcp client run on MATLAB or Python using sim-

ulation scripts which can be added as a library. The main
responsibilities of the client are:

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA023

WEPHA023
1128

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Hardware Technology

• open and keep connection with the server

• translation of simulation data into the defined commu-
nication protocol

• control the data flow

DESIGN FLOW
The preparation for the verification of UUT starts with

writing a HDL testbench entity with the instance of the UUT
and a simple clock process in minimum. Next there are the
following steps to be done on the slave side:

• write source compilation steps for the HDL simulator
– this is a common to all simulation strategies, HDL
project sources and libraries has to be added to the
project and next compiled. Makefile or tcl do file can
be used

• create Tcl .do file if not done in the first step

• add cosimtcp libraries path to Tcl .do file

• define inputs and outputs of UUT by creating aliases
to the paths of HDL objects in Tcl .do file

• run the server, can be done in Tcl .do file or from the
simulator console

The example Tcl code of slave side is presented in Fig-
ure 3.

Figure 3: Example Tcl code of the slave side for the 3-input
and 2-output UUT.

While the slave side awaits for the connection and instruc-
tions there are the following steps to be done on the master
side:

• create cosimtcp object which will connect to the slave
side

• create stimulus and send to the master side

• run simulation steps

• request output data from the slave

• verify result

• run next step or close simulation

The example Matlab code of the master side is presented
in Figure 4.

Figure 4: Example Matlab code of the slave side simulating
UUT with the 3 inputs and 2 outputs.

CASE STUDY: STATE SPACE
CONTROLLER

The solution presented in this paper has been used to
validate the design of a state space controller used in one
of the synchronization subsystems. Stable operation of the
controller was tested under different conditions. There was a
hundreds of iteration runs, each with a different coefficients
set. The result of the one of the iterations is presented in
Figure 5.

0 50 100 150

-5

0

5

10

15

co
n
tr

o
lle

r
o
u
tp

u
t

#10-3

HDL implementation result
Matlab result

0 50 100 150
samples

0

5

e
rr

o
r

#10-4

error=Matlab-HDL

Figure 5: Matlab result of the simulation of the state space
controller for one coefficients set.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA023

Hardware Technology
WEPHA023

1129

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

CASE STUDY: RF FIELD DETECTION
Another case in which described co-simulation method

has been used is verification of the amplitude and phase
detection of the RF signal. The component has been driven
with a long data trains in a range of 60000-200000 of the
ADC samples. The result of this simulation visible in Mod-
elSim is presented in Figure 6.

Figure 6: ModelSim window during field detection algo-
rithm simulation, presents the ADC data input and the out-
puts with the amplitude and phase values of the signal

RESULTS
The co-simulation technique described in this paper has

been used to test and verify DSP functionality of many HDL
components. Simulation tools, such as Xilinx Vivado and
ModelSim, were used alternatively, as was the case with
Matlab and Python on the client side. All combinations of
the tools are evaluated and the simulation time is observed
to be comparable. The best performance is achieved when
the HDL simulators run in batch mode. The best result is
achieved when tools are run in a batch mode. The simula-
tion time is around 20 times slower when Graphical User
Interface (GUI) is opened.

The simulation times for the case studies given above are
presented in Table 1 and Table 2. Tests were performed on
the machine equipped with the Intel i5 2500K CPU type and
24GB of RAM memory.

Table 1: State Space Controller Simulation Results with
ModelSim and Matlab, Components Written in VHDL Code

Resources DSP:15, LUTs:3085, Reg:4177
Objects 40 inputs, 2 outputs
Iterations 100
Steps 512

Total Time 5.2 min

CONCLUSION AND OUTLOOK
This paper describes a concept of functional co-simulation

of the HDL with the use of TCP/IP socket function available
in Tcl. The basic idea and architecture of this solution has
been given. It has been shown that cosimtcp can be suc-
cessfully used to verify DSP algorithms written in HDL. Its

Table 2: Field Detection Simulation Results with ModelSim
and Matlab, Components Written in VHDL Code

Resources DSP:8, LUTs:767, Reg:665
Objects 2 inputs, 3 outputs
Iterations 1
Steps 60000

Total Time 3.5 min

simple syntax enables rapid simulation preparation. Simula-
tion time using this solution is within the acceptable range.
This method can be used with a various types of HDL lan-
guages as it does not depend on the HDL language.

At the beginning, Xilinx ISE HDL simulator was suc-
cessfully usedfor the conceptual evaluation of the first im-
plementation of cosimtcp. Later we focused on Xilinx
ISE/Vivado, Mentor Graphics ModelSim/Questa, Math-
works MATLAB/Simulink and Python due to the intensive
usage of these tools within our group. Therefore we believe
this solution could be adapt to any other tool that supports
Tcl.

REFERENCES
[1] J. Branlard et al., “The European XFEL LLRF System,” in

Proc. IPAC’12, New Orleans, LA, USA, May 2012, paper
MOOAC01, pp. 55–57.

[2] “The European X-Ray Free Electron Laser Technical Design
Report,” http://xfel.desy.de

[3] M. N. Wageeh, A. M. Wahba, A. M. Salem and M. A. Sheirah,
“FPGA based accelerator for functional simulation,” 2004
IEEE International Symposium on Circuits and Systems (IS-
CAS), Vancouver, BC, September 2004.
doi:10.1109/ISCAS.2004.1329526

[4] S. Jain, P. Govani, K. B. Poddar, A. K. Lal and R. M. Parmar,
“Functional verification of DSP based on-board VLSI designs,”
2016 International Conference on VLSI Systems, Architectures,
Technology and Applications (VLSI-SATA), Bangalore, India,
October 2016, pp. 1-4.
doi:10.1109/VLSI-SATA.2016.7593030

[5] U. Hatnik and S. Altmann, “Using ModelSim,
Matlab/Simulink and NS for Simulation of Distributed
Systems,” in Parallel Computing in Electrical Engineering,
2004. International Conference on, Parallel Computing in
Electrical Engineering (PARLEC), Dresden, Germany, 2004,
pp. 114-119.
doi:10.1109/PCEE.2004.74

[6] N. Canellas and J. M. Moreno, “Speeding up hardware proto-
typing by incremental simulation/emulation,” in Proceedings
11th International Workshop on Rapid System Prototyping.
RSP 2000. Shortening the Path from Specification to Prototype
(Cat. No.PR00668), 11th International Workshop on Rapid
System Prototyping, Paris, France, 2000, pp. 98-102.
doi:10.1109/IWRSP.2000.855203

[7] Co-Simulation cosimtcp repository on GitHub, https://
github.com/mskfw/cosimtcp

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA023

WEPHA023
1130

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Hardware Technology

