
APPLICATION DEVELOPMENT IN THE FACE OF EVOLVING WEB
TECHNOLOGIES AT THE NATIONAL IGNITION FACILITY

E. Pernice, C. Albiston, R. Beeler, E. Chou, C. Fry, M. Shor, J. Spears,
D. Speck, A. Thakur, S. West

Lawrence Livermore National Laboratory, Livermore, USA

Abstract
The past decade has seen great advances in web technol-

ogy, making the browser the de-facto platform for many
user applications. Advances in JavaScript, and innovations
such as TypeScript, have enabled developers to build large
scale applications for the web without sacrificing code
maintainability. However, this rapid growth has also been
accompanied by turbulence. AngularJS arrived and saw
widespread adoption only to be supplanted by Angular 2+
a few years later; meanwhile other JavaScript-based lan-
guages and developer tools have proliferated. At the Na-
tional Ignition Facility (NIF), the Shot Setup Tool (SST) is
a large web-based tool for configuring experiments on the
NIF that is being developed to replace a legacy Java Swing
application. We will present our experience in building
SST during this turbulent time, including how we have lev-
eraged TypeScript to greatly enhance code readability and
maintainability in a multi-developer team, and our current
effort to incrementally migrate from AngularJS to React.

INTRODUCTION
The Campaign Management Tool (CMT) is an applica-

tion that is used to configure experiments at the NIF. Orig-
inally developed as a commissioning tool for the NIF laser,
CMT was subsequently put to work as the production ex-
periment editor for NIF experimental operations. It re-
mained under constant development for 15 years support-
ing the ever-expanding stable of NIF target diagnostics and
the ongoing refinement of the NIF laser. However, CMT’s
architecture was not optimal for the development focus of
the program, and it also carried a very steep learning curve
for software developers. In 2014 CMT was identified as a
bottleneck for shot operations as the NIF sought a dramatic
increase in its experiment shot rate. A project was under-
taken to address CMT usability and maintainability con-
cerns. These concerns included an outdated technology
stack as well as several architectural features that inhibited
maintainability. As a result of this effort, we decided a new
application was needed to meet programmatic needs [1].

It was critical to select a technology stack with long term
sustainability and which followed current computing
trends. Since the initial development of CMT, a highly in-
teractive desktop application, web browser-based applica-
tions had increased significantly in capability and ubiquity.
Model-View-Controller (MVC) frameworks, such as An-
gularJS and Backbone, allowed much better client-side
rendering and supplanted server-side rendering, such as Ja-
vaServer Pages (JSP), as the standard for interactive web
applications. In order to maintain parity with CMT func-
tionality we decided to build SST as a client rendered web

application, on a RESTful back end. In 2015 we began de-
velopment on SST.

INITIAL TECHNOLOGY STACK
For our initial release of SST, we adopted a handful of

front-end technologies that would help us achieve our early
goals but that would also give us flexibility to adapt to
changes in the ecosystem or evolving requirements.

TypeScript
Typescript [2] was a new and somewhat unproven tech-

nology at the time we adopted it. TypeScript overcame
some of our largest concerns about moving from a large,
Java-heavy application to a large JavaScript-heavy one be-
cause it is a superset of JavaScript that adds many features
to improve code maintainability and scalability. TypeScript
code is transpiled to JavaScript as a build step, which is
then deployed with the application.

Compile-time error checking In a vanilla JavaScript
application, many types of errors that would have been
compile time errors in Java are run-time errors and will
only be raised when the offending code is executed. This
was a concern for us because a typo in a variable or method
name could cause a bug that might not be found until after
deployment. Even troubleshooting in a development envi-
ronment would be a headache. TypeScript addressed this
problem directly and effectively by failing during our build
cycle when validity errors such as these were detected.

Self-documenting code A type-safe language like
Java intrinsically provides certain self-documenting fea-
tures. Consider a method that takes a ShoppingCart as a
parameter and returns a list of Items. In JavaScript, clarity
must be achieved by apt variable names or comments,
which are less explicit and less reliably correct. TypeScript
allows us to provide type annotations, which are checked
for correctness during transpilation.

Advanced language features TypeScript provides
backward compatible use of features from future JavaS-
cript releases such as classes, decorators, and lambdas.
This allowed us to support many browsers. It also provides
features exclusive to TypeScript, like interfaces and private
members. As a team with mainly Java expertise, the addi-
tion of familiar object-oriented constructs was welcome.

IDE support Compared to Java, IDE support is very
limited for JavaScript. TypeScript enables excellent sup-
port for IDE functions like auto-completion, refactoring
automation, and searching for method or variable refer-
ences.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR006

WEMPR006
1052

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Jasmine/Karma/PhantomJS
 A major factor in our inability to meet escalating pro-

grammatic needs with CMT was its lack of unit tests. This
made changes to CMT risky because small changes often
had unintended consequences. We knew that it would be
critical to make unit testing an early focus in SST in order
to help protect against the risks and costs associated with
buggy code and enable long-term maintainability.

To achieve our unit testing goals on the front-end we
used Jasmine [3], a popular assertion library. In order to
run our Jasmine tests, we used Karma [4] as a test runner,
and PhantomJS [5] as a headless browser, which enabled
testing in a continuous integration environment.

SystemJS
SystemJS [6] is a module loader that supports asynchro-

nously fetching modules from the server. It worked with
TypeScript out of the box, was simple to configure, and it
was recommended by Google for use in Angular 2.

JQuery
As the demand for more interactive browser applications

has increased over the years, JQuery [7] has served as a
useful bridge between server and client rendered applica-
tions. JQuery provides a convenient way for a server ren-
dered application to do DOM manipulation on the client
while leaving the heavy lifting up to the server. Although it
is not well suited for large client rendered applications, it
was a powerful tool for our occasional needs to directly
update the DOM.

AngularJS
AngularJS [8] is a client-side MVC framework that was

widely adopted by web developers in the early develop-
ment of SST. It enables client-side rendering of templates
and single page application routing. It had many useful fea-
tures to aid in development of SST.

Highly interactive With two-way bindings AngularJS
offered an easy way to build an interactive, dynamically
updating UI. Promise-based digest updates allowed us to
interact with our REST API with confidence knowing that
any model changes would be rendered.

Structured architecture As an MVC framework, An-
gularJS provided an architectural skeleton that was helpful
for building a large client-side application. Out of the box,
it provided most of what we needed, such as client-side
routing, dependency injection, and a promise-based HTTP
service.

Long-term stability AngularJS was backed by
Google, and widely used by the web development commu-
nity. Angular 2.0 was on the horizon but hadn’t been re-
leased yet. Though React had emerged as a potential up-
and-comer, its long-term stability was not yet established.

LIBRARY MIGRATIONS
Over the past several years, the entire JavaScript ecosys-

tem has been changing rapidly. New modules are being

added to NPM (the de-facto repository for JavaScript pack-
ages) at an unprecedented rate. Fig. 1 illustrates this, show-
ing the number of packages in the NPM repository over
time compared to other popular repositories, like Maven
Central. This development focus has led to a steady in-
crease in sophistication of JavaScript-based frameworks
and technologies.

Figure 1: Number of available modules in repositories for
various languages, as of 8/12/2019 [9].

These changes have come at a cost. The continuing evo-
lution of front-end technologies necessitates that applica-
tions adapt quickly or become legacy. The landscape of
front-end development looks very different today than
when SST development began, and we have been forced to
develop strategies to migrate to different technologies. This
is not to say that these changes have been negative. Front-
end technologies have not been simply changing for
change’s sake. Instead, they have been markedly improv-
ing. Changes that we have been “forced” to make have
been quite positive, improving the overall maintainability,
readability, and reliability of our code.

Jasmine/Karma/PhantomJS to Jest
Jest [10] is a fully featured JavaScript unit testing frame-

work developed by Facebook. It has been steadily growing
in popularity since 2016 while our previous unit testing
stack has been declining, as seen in Fig. 2.

Figure 2: Karma, PhantomJS, Jasmine, and Jest downloads
per year via NPM, between January 1, 2015 and July 31,
2019 [11].

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR006

Software Technology Evolution
WEMPR006

1053

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Although our unit testing technology stack was worka-
ble, migrating to Jest solved several important problems for
us:

• After upgrading other client libraries, we began to ex-
perience issues with Karma silently skipping some
tests and reporting a successful run.

• Jest is self-contained, and it does not require an addi-
tional test-runner or browser. Installing (now discon-
tinued) PhantomJS as a headless browser on our build
servers had been a source of frustration.

• Debugging in our IDEs with mapped TypeScript files
‘just worked’ in Jest. Karma was unreliable in provid-
ing similar functionality.

• Jest was far simpler and required less configuration
• Jest added new features such as snapshot testing.
 Furthermore, migrating to Jest was painless. Jest uses

an assertion syntax that is almost completely compatible
with Jasmine. Because our tests were written with Jasmine,
Jest worked with minimal configuration, and allowed us to
drop Jasmine, Karma, and PhantomJS dependencies.

SystemJS to Webpack
As SST grew in complexity, SystemJS began to strain

under its weight. Circular dependencies were fixable but
were difficult to troubleshoot in SystemJS. Since SystemJS
does not provide any support for bundling or minification
out of the box, our application had to asynchronously load
hundreds of code files in the browser at application start.
Each of these files were fetched in its own HTTP request.
This dependency loading delay significantly impacted our
performance.

Meanwhile, Webpack [12], along with libraries like ts-
loader that augment it with TypeScript support, grew in
adoption and maturity, as seen in Fig. 3.

Figure 3: SystemJS, Webpack, and ts-loader downloads
per year via NPM, between January 1, 2015 and July 31,
2019 [13].

Webpack enabled us to bundle and minify our client
code, significantly cutting down on the number and size of
HTTP requests at our application start. This benefit out-
weighed the drawback of the complexity in configuring it.

MOVING AWAY FROM THE ANGULARJS
FRAMEWORK

On July 1, 2018 AngularJS entered a three-year period
of Long Term Support [14]. AngularJS had been replaced
by Angular [15]. The new version of the technology was
not backward compatible with the old. When we began de-
velopment on SST we had planned to upgrade from Angu-
larJS to Angular once it was released, however, we did not
initially appreciate the amount of effort that this would en-
tail. The Angular team had documented some guidelines
and practices to help smooth the transition, but no straight-
forward migration path existed. After an analysis, we de-
termined that the effort required to upgrade to Angular
would be comparable to the cost of a framework change.
We began to consider the possibility of replacing Angu-
larJS, rather than upgrading it, and began to evaluate React.

React
React initially caught our attention because of its popu-

larity. Although Angular has enjoyed stable growth, Re-
act’s adoption has been outpacing Angular’s consistently
in annual NPM downloads, as seen in Fig. 4.

Figure 4: Angular and React downloads per year via NPM,
between January 1, 2015 and July 31, 2019 [16].

A more interesting metric for us was React’s level of de-
veloper satisfaction. Fig. 5 shows the results over the past
few years of an annual survey of JavaScript developers
with 20,268 developers surveyed in 2018 [17]. While
adoption of both Angular and React grew rapidly, the de-
veloper community commonly expressed dissatisfaction
with Angular.

When we considered the unavoidably major effort of
moving from AngularJS, these market indicators made Re-
act an interesting candidate for a replacement. After further
investigation, several technical features of React drove us
to commit to it.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR006

WEMPR006
1054

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

Figure 5: Historic developer satisfaction survey results from State of JS [17].

Just JavaScript Unlike Angular/AngularJS, which
have their own templating languages, React view files
(JSX/TSX files) are essentially JavaScript. Rendering an
array of elements boils down to using vanilla JavaScript
constructs like map(), rather than using special directives
like ngFor or ngRepeat. Our team has found React easier
to reason about and the learning curve has been much
lower than it was with AngularJS.

Type checked views One problem that we had with
AngularJS was the lack of any type checking in templates.
We used TypeScript on the client to ensure safe refactoring,
but this only worked to a point. For example, if we renamed
a variable that was referenced in an AngularJS template but
forgot to update it in the template, there was no transpila-
tion step to catch the error. Angular had the same limita-
tion. In React, however, we were able to simply code our
views in TSX files (the TypeScript equivalent of a JSX
file). TypeScript was then able to handle type checking for
our view code just as well as it did for everything else.

Snapshot testing Snapshot testing is a feature sup-
ported by Jest that takes a “snapshot” of a rendered React
component. That snapshot is committed to source control
and compared on subsequent runs of the test. This ap-
proach provides a quick and simple way of testing that the
rendered version of a component does not change unex-
pectedly.

State Management with Mobx
As we explored React further, we quickly encountered a

major limitation. State management is a common hurdle
for developers working with React. React’s state manage-
ment is clean and simple, which works well a la carte for
small applications. As applications grow in complexity and
wish to share state between nested components, the need
for more sophisticated state management often arises. Re-
dux [18] is perhaps the most widely adopted solution for

this, but it is also somewhat heavy handed. Integrating Re-
dux into an already large application like SST would have
required significant amounts of re-architecting.

Mobx [19] is a reactive programming library that is also
often used to tackle the problem of state management.
Mobx allows decorating certain properties as observables
and uses generated getters and setters to track their refer-
ences and mutations. When an observing piece of code,
like a React component, references an observable, Mobx
tracks this reference as a dependency and updates the ob-
server whenever the observable mutates. This mechanism
enables a React component to observe anything in the ap-
plication and automatically re-render when it mutates. This
was an incredibly useful, intuitive and lightweight way for
us to manage the state of our React components.

Migration Strategy
A key concern in our evaluation of React was whether

we could migrate gradually. Attempting to migrate our en-
tire application in one massive push would have been too
large an undertaking. We needed to be able to move away
from AngularJS while continuing to release new SST func-
tionality for ongoing programmatic requirements. These
demands led us to seek a strategy by which we could mi-
grate AngularJS code at our own pace, and perhaps only
when a component needed to be updated.

Fortunately, this was made possible by react2angular
[20]. React2Angular is a library that enables using React
components from within AngularJS components.

AngularJS components We needed to migrate our
53 AngularJS components to React components. Much of
our AngularJS template code was reusable as TSX, and
much of our AngularJS controller code was reusable di-
rectly in the React component. This compatibility made
migrations significantly less costly than full rewrites.

Because react2angular allowed us to use React compo-
nents from within AngularJS code, these migrations
needed to occur from the bottom up. That is, AngularJS
components that did not reference any other AngularJS

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR006

Software Technology Evolution
WEMPR006

1055

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

components were migrated first. Frequently, our AngularJS
components depended on injected AngularJS services. In
these situations, we manually injected the dependencies
into the React component using the AngularJS $injector.

AngularJS services In parallel with the migration of
our AngularJS components, we needed to migrate our 20
AngularJS services to wean ourselves off of the AngularJS
dependency injection mechanism. We decided to use Inver-
sify [21] for dependency injection. These migrations in-
volved some refactoring, but no code rewriting.

AngularJS core services Our final step, after migrat-
ing all of our components and services away from Angu-
larJS, will be to remove our dependencies from core Angu-
larJS services. We have many dependencies on core Angu-
larJS services, such as $timeout, $q, and $http, which we
will need to find replacements for. Because these services
interact deeply with AngularJS’s digest updates, this step
cannot not be undertaken until we have no AngularJS com-
ponents, and thus no reliance on digest updates.

Current Progress
To date we have migrated 36 out of 53 AngularJS com-

ponents to React, and we have migrated 13 out of 20 An-
gularJS services to Inversify. We have taken a stance of mi-
grating a piece of AngularJS code either (1) when we need
to update the code anyway, or (2) when we cannot parallel-
ize other programmatic work and have developer resources
to commit. This has enabled us to work toward this migra-
tion at a pace that does not inhibit us from meeting other
programmatic needs.

CONCLUSION
The rapid pace of front-end technology evolution over

the past several years has been extraordinarily challenging
for application developers. It is impossible to predict when
or by how much the ecosystem will stabilize, but through
this turbulence, we have learned to keep several mitigating
factors in mind:

• The JavaScript ecosystem isn’t just changing, it is im-
proving, and our adaptation to evolving web technolo-
gies has been overwhelmingly positive. Changes we
made (or were forced to make, in the case of Angu-
larJS) greatly improved our code reliability and main-
tainability.

• Many other applications are in the same situation. The
web is evolving for everyone, and as widely used tech-
nologies exit and new ones enter, the community has
stepped up to ease the pain. For example, migrating
from AngularJS to React is enabled by community
tooling, such as react2angular. And migrating to Jest
was incredibly simple for us, due to the syntax com-
patibility with Jasmine.

• Gradual evolution is helpful. Technical debt grows
over time, but by staying abreast of new technologies
and updating our dependencies periodically, we can
keep our technical debt down gradually rather than
having to make larger, more jarring changes.

• Unit testing is critical. Thorough unit testing allows us
to evolve with the ecosystem, making changes and re-
factoring as needed with confidence.

 Although change can be costly, this cost can be par-
tially mitigated with diligence and planning, and it is not
without a benefit.

ACKNOWLEDGEMENT
This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

REFERENCES
[1] A. D. Casey et al., “Strategies for Migrating to a New Ex-

periment Setup Tool at the National Ignition Facility”, in
Proc. ICALEPCS'17, Barcelona, Spain, Oct. 2017, pp. 311-
314. doi:10.18429/JACoW-ICALEPCS2017-TUMPL05

[2] TypeScript, https://www.typescriptlang.org
[3] Jasmine, https://jasmine.github.io
[4] Karma, https://karma-runner.github.io/lat-

est/index.html
[5] PhantomJS, https://phantomjs.org
[6] SystemJS, https://github.com/systemjs/systemjs
[7] JQuery, https://jquery.com
[8] AngularJS, https://angularjs.org
[9] Module Counts, http://www.modulecounts.com

[10] Jest, https://jestjs.io
[11] npm-stat: karma, phantomjs, jasmine, jest, https://npm-

stat.com/charts.html?package=karma&pack-
age=phantomjs&package=jasmine&pack-
age=jest&from=2015-01-01&to=2019-07-31

[12] Webpack, https://webpack.js.org
[13] npm-stat: systemjs, webpack, ts-loader, https://npm-

stat.com/charts.html?package=systemjs&pack-
age=webpack&package=ts-loader&from=2015-01-
01&to=2019-07-31

 [14] Stable AngularJS and Long Term Support,
https://blog.angular.io/stable-angularjs-
and-long-term-support-7e0776

[15] Angular, https://angular.io
[16] npm-stat: react, @angular/core, https://npm-

stat.com/charts.html?package=react&pack-
age=%40angular%2Fcore&from=2015-01-
01&to=2019-07-31

[17] The State of JavaScript 2018,
https://2018.stateofjs.com

[18] Redux, https://redux.js.org
[19] Mobx, https://mobx.js.org
[20] react2angular - npm, https://www.npmjs.com/pack-

age/react2angular

[21] Inversify, http://inversify.io

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEMPR006

WEMPR006
1056

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

